Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 1/2015

01-03-2015 | Review Article

Polygeneration of SNG, heat and power based on biomass gasification and water electrolysis—concepts and their assessment

Authors: Hannes Wagner, Christina Wulf, Martin Kaltschmitt

Published in: Biomass Conversion and Biorefinery | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The gasification of biomass and the subsequent conversion to electric power, heat, or synthetic natural gas (SNG) offers the possibility to produce different products in one process under minimizing potential losses. In a so called polygeneration approach, the operation of such a process may be linked to changing energy market situations to improve the economic viability. The integration of water electrolysis for hydrogen production enables the process to provide positive as well as negative controlling power; i.e. it can provide system service and contribute to the stability to the electricity grid. Against this background, the aim of this paper is the technical, economic and environmental analysis of a polygeneration approach based on biomass gasification processes for the provision of SNG, heat and power taking the current electricity spot market into consideration. Therefore, several processes schemes are developed and analysed in terms of process efficiency (exergetic efficiency), economic viability (SNG production costs) as well as environmental performance (specific greenhouse gas emissions). For comparison, a biogas-based polygeneration approach for the production of biomethane, heat and power is analysed as well. In case of an operating mode optimised for SNG production, the exergetic efficiency results between 65.4 and 67.2 % for the gasification-based processes and 55.6 to 63.3 % for the biogas-based processes. If primarily electric power is provided in case of high spot market prices, the operation mode is optimised for power production; this results in significantly lower exergetic efficiencies of 48.0 to 44.9 % for the gasification-based processes and 38.0 to 41.2 % for the biogas-based processes. The production costs are calculated depending on the full load operating hours for maximizing SNG production and maximised power production, respectively. The results show a clear dependency of SNG production costs from the operating hours for all processes. The GHG emissions for maximum SNG production range between 43.4 and 95.1 gCO2-eq/kWhMethane. If more power is produced, the emissions rise to values between 55.4 and 127.6 gCO2-eq/kWhMethane. Lower emissions can be achieved by SNG production via gasification than via biogas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bajohr S et al (2011) gwf-Gas/Erdgas, Fachberichte Rohrnetz, p200-210 Bajohr S et al (2011) gwf-Gas/Erdgas, Fachberichte Rohrnetz, p200-210
7.
8.
go back to reference Bajohr S et al (2013) gwf-Gas/Erdgas, Fachberichte Power-to-Gas, p222-227 Bajohr S et al (2013) gwf-Gas/Erdgas, Fachberichte Power-to-Gas, p222-227
11.
go back to reference Hofbauer H et al (2007) Int J Chem React Eng 5:A54 Hofbauer H et al (2007) Int J Chem React Eng 5:A54
12.
go back to reference FNR (2006) Handreichung Biogasgewinnung und -nutzung, Gülzow FNR (2006) Handreichung Biogasgewinnung und -nutzung, Gülzow
13.
go back to reference Baehr H, Kabelac S (2009) Thermodynamik: Grundlagen und technische Anwendungen. Springer, Berlin HeidelbergCrossRef Baehr H, Kabelac S (2009) Thermodynamik: Grundlagen und technische Anwendungen. Springer, Berlin HeidelbergCrossRef
14.
go back to reference Müller-Langer F (2012) PhD thesis. Hamburg University of Technology Müller-Langer F (2012) PhD thesis. Hamburg University of Technology
15.
go back to reference Couper JR, Penney WR, Fair JR (2009) Chemical process equipment. Selection and design. 2. Edition: Butterworth-Heinemann Couper JR, Penney WR, Fair JR (2009) Chemical process equipment. Selection and design. 2. Edition: Butterworth-Heinemann
16.
go back to reference Peters, Max S, Timmerhaus, Klaus D, West, Ronald E (2003) Plant design and economics for chemical engineers. 5th ed. New York: McGraw-Hill (McGraw-Hill chemical engineering series) Peters, Max S, Timmerhaus, Klaus D, West, Ronald E (2003) Plant design and economics for chemical engineers. 5th ed. New York: McGraw-Hill (McGraw-Hill chemical engineering series)
17.
19.
go back to reference DIN EN ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework; German and English version, Beuth Verlag Berlin (2006) DIN EN ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework; German and English version, Beuth Verlag Berlin (2006)
20.
go back to reference DIN EN ISO 14040:2006 Environmental management – Life cycle assessment – Requirements and guidelines German and English version, Beuth Verlag Berlin (2006) DIN EN ISO 14040:2006 Environmental management – Life cycle assessment – Requirements and guidelines German and English version, Beuth Verlag Berlin (2006)
21.
go back to reference IPCC (2007) Climate change 2007: the physical science basis. Cambridge Press, New York IPCC (2007) Climate change 2007: the physical science basis. Cambridge Press, New York
23.
go back to reference Kiesel F (2013) Bruttostromerzeugung in Deutschland von 1990 bis 2012 nach Energieträgern, AG Energiebilanzen e.V Kiesel F (2013) Bruttostromerzeugung in Deutschland von 1990 bis 2012 nach Energieträgern, AG Energiebilanzen e.V
Metadata
Title
Polygeneration of SNG, heat and power based on biomass gasification and water electrolysis—concepts and their assessment
Authors
Hannes Wagner
Christina Wulf
Martin Kaltschmitt
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 1/2015
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-014-0127-5

Other articles of this Issue 1/2015

Biomass Conversion and Biorefinery 1/2015 Go to the issue