Skip to main content
Top

2023 | OriginalPaper | Chapter

Polymeric Biodegradable Biomaterials for Tissue Bioengineering and Bone Rejuvenation

Authors : Eribe M. Jonathan, Andrew O. Ohifuemen, Jacob N. Jacob, Aaron Y. Isaac, Ikhazuagbe H. Ifijen

Published in: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The necessity for multiple surgeries is decreased by tissue engineering techniques, which also lessen donor site morbidity in graft procedures. Biodegradable scaffolds are created to contain cells; as new tissue develops; it gradually replaces the biodegradable scaffold to restore full bodily function. Due to their resemblance to extracellular matrices, high biocompatibility and biodegradability, natural and synthetic polymeric materials have been used extensively in bone tissue engineering. To adapt polymeric materials to the unique needs of bone regeneration, a range of approaches have been used to modify their characteristics. This review focused on current research on collagen and synthetic polymer-based scaffolds for tissue bioengineering and bone regeneration, such as polycaprolactone, poly(glycolic acid), poly(lactic-co-glycolic acid), and poly(lactic-acid-glycolic acid) (PCL). If we can better manage the interface between the material and the surrounding bone tissue, the next generation of biodegradable materials may benefit from our understanding of how cells interact with materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang W, Wang N, Yang M, Sun T, Zhang J, Zhao Y, Huo N, Li Z (2022) Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat 33:41–54CrossRef Zhang W, Wang N, Yang M, Sun T, Zhang J, Zhao Y, Huo N, Li Z (2022) Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat 33:41–54CrossRef
2.
go back to reference Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q (2022) Electrospun biomimetic nanofibrous scaffolds: a promising prospect for bone tissue engineering and regenerative medicine. Int J Mol Sci 23:9206CrossRef Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q (2022) Electrospun biomimetic nanofibrous scaffolds: a promising prospect for bone tissue engineering and regenerative medicine. Int J Mol Sci 23:9206CrossRef
3.
go back to reference Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 12:3117–3145CrossRef Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 12:3117–3145CrossRef
4.
go back to reference Parisi L, Toffoli A, Ghiacci G, Macaluso GM (2018) Tailoring the interface of biomaterials to design effective scaffolds. J Funct Biomater 9(3):50CrossRef Parisi L, Toffoli A, Ghiacci G, Macaluso GM (2018) Tailoring the interface of biomaterials to design effective scaffolds. J Funct Biomater 9(3):50CrossRef
5.
go back to reference Yu X, Zhang H, Miao XS, Hu Y (2022) Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. J Leather Sci Eng 4:11 Yu X, Zhang H, Miao XS, Hu Y (2022) Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. J Leather Sci Eng 4:11
6.
go back to reference Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed VA (2022) Review of recent advances in natural polymer-based scaffolds for musculoskeletal tissue engineering. Polym 14:2097CrossRef Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed VA (2022) Review of recent advances in natural polymer-based scaffolds for musculoskeletal tissue engineering. Polym 14:2097CrossRef
7.
go back to reference Adel IM, ElMeligy MF, Elkasabgy NA (2022) Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics 14(2):306CrossRef Adel IM, ElMeligy MF, Elkasabgy NA (2022) Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics 14(2):306CrossRef
8.
go back to reference Harris AF, Lacombe J, Zenhausern F (2021) The emerging role of decellularized plant-based scaffolds as a new biomaterial. Int J Mol Sci 22(22):12347CrossRef Harris AF, Lacombe J, Zenhausern F (2021) The emerging role of decellularized plant-based scaffolds as a new biomaterial. Int J Mol Sci 22(22):12347CrossRef
9.
go back to reference Girón J, Kerstner E, Medeiros T, Oliveira L, Machado GM, Malfatti CF, Pranke P (2021) Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz J Med Biol Res 54(9):e11055CrossRef Girón J, Kerstner E, Medeiros T, Oliveira L, Machado GM, Malfatti CF, Pranke P (2021) Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz J Med Biol Res 54(9):e11055CrossRef
10.
go back to reference Omorogbe SO, Ikhuoria SO, Ifijen IH, Simo A, Aigbodion AI, Maaza M (2019) Fabrication of monodispersed needle-sized hollow core polystyrene microspheres. In: The Minerals, Metals & Materials Society (ed) TMS 2019 148th annual meeting & exhibition supplemental proceeding, pp 155–164 Omorogbe SO, Ikhuoria SO, Ifijen IH, Simo A, Aigbodion AI, Maaza M (2019) Fabrication of monodispersed needle-sized hollow core polystyrene microspheres. In: The Minerals, Metals & Materials Society (ed) TMS 2019 148th annual meeting & exhibition supplemental proceeding, pp 155–164
11.
go back to reference Ifijen IH, Ikhuoria EU (2019) Generation of highly ordered 3d vivid monochromatic coloured photonic crystal films using evaporative induced technique. Tanzania J Sci 45(3):439449 Ifijen IH, Ikhuoria EU (2019) Generation of highly ordered 3d vivid monochromatic coloured photonic crystal films using evaporative induced technique. Tanzania J Sci 45(3):439449
12.
go back to reference Ifijen IH, Ikhuoria EU (2020) Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter. Tanzania J Sci 46(1):19–30 Ifijen IH, Ikhuoria EU (2020) Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter. Tanzania J Sci 46(1):19–30
13.
go back to reference Ifijen IH, Ikhuoria EU, Omorogbe SO (2018) Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J Dispersion Sci Tech 40(7):1–8 Ifijen IH, Ikhuoria EU, Omorogbe SO (2018) Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J Dispersion Sci Tech 40(7):1–8
14.
go back to reference Ifijen IH, Ikhuoria EU, Omorogbe SO, Aigbodion AI (2019) Ordered colloidal crystals fabrication and studies on the properties of poly (styrene-butyl acrylate-acrylic acid) and polystyrene latexes. In: Srivatsan T, Gupta M (eds) Nanocomposites VI: nanoscience and nanotechnology in advanced composites. The Minerals, Metals & Materials Series. Springer, Cham, pp 155–164 Ifijen IH, Ikhuoria EU, Omorogbe SO, Aigbodion AI (2019) Ordered colloidal crystals fabrication and studies on the properties of poly (styrene-butyl acrylate-acrylic acid) and polystyrene latexes. In: Srivatsan T, Gupta M (eds) Nanocomposites VI: nanoscience and nanotechnology in advanced composites. The Minerals, Metals & Materials Series. Springer, Cham, pp 155–164
15.
go back to reference Ifijen IH, Maliki M, Ovonramwen OB, Aigbodion AI, Ikhuoria EU (2019) Brilliant coloured monochromatic photonic crystals films generation from poly (styrene-butyl acrylate-acrylic acid) latex. J Appl Sci Environ Mgt 23(9):1661–1664 Ifijen IH, Maliki M, Ovonramwen OB, Aigbodion AI, Ikhuoria EU (2019) Brilliant coloured monochromatic photonic crystals films generation from poly (styrene-butyl acrylate-acrylic acid) latex. J Appl Sci Environ Mgt 23(9):1661–1664
16.
go back to reference Ifijen IH, Omorogbe SO, Maliki M, Odiachi IJ, Aigbodion AI, Ikhuoria EU (2020) Stabilizing capability of gum Arabic on the synthesis of poly (styrene-methylmethacrylate-acrylic acid) latex for the generation of colloidal crystal films. Tanzania J Sci 46(2):345–435 Ifijen IH, Omorogbe SO, Maliki M, Odiachi IJ, Aigbodion AI, Ikhuoria EU (2020) Stabilizing capability of gum Arabic on the synthesis of poly (styrene-methylmethacrylate-acrylic acid) latex for the generation of colloidal crystal films. Tanzania J Sci 46(2):345–435
17.
go back to reference Ifijen IH, Maliki M, Odiachi IJ, Aghedo ON, Ohiocheoya EB (2022) Review on solvents-based alkyd resins and water borne alkyd resins: impacts of modification on their coating properties. Chem Afri 5:211–225CrossRef Ifijen IH, Maliki M, Odiachi IJ, Aghedo ON, Ohiocheoya EB (2022) Review on solvents-based alkyd resins and water borne alkyd resins: impacts of modification on their coating properties. Chem Afri 5:211–225CrossRef
18.
go back to reference Zhang Y, Yu X, Cheng Z (2022) Research on the application of synthetic polymer materials in contemporary public art. Polym 14:1208CrossRef Zhang Y, Yu X, Cheng Z (2022) Research on the application of synthetic polymer materials in contemporary public art. Polym 14:1208CrossRef
19.
go back to reference Donnaloja F, Jacchetti E, Soncini M, Raimondi MT (2020) Natural and synthetic polymers for bone scaffolds optimization. Polym 12(4):905CrossRef Donnaloja F, Jacchetti E, Soncini M, Raimondi MT (2020) Natural and synthetic polymers for bone scaffolds optimization. Polym 12(4):905CrossRef
20.
go back to reference Filippi M, Born G, Chaaban M, Scherberich A (2020) Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol 8:474CrossRef Filippi M, Born G, Chaaban M, Scherberich A (2020) Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol 8:474CrossRef
21.
go back to reference Lin X, Patil S, Gao YG, Qian A (2020) The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 11:757CrossRef Lin X, Patil S, Gao YG, Qian A (2020) The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 11:757CrossRef
22.
go back to reference Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S (2019) Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 17(8):467CrossRef Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S (2019) Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 17(8):467CrossRef
23.
go back to reference Radulescu DM, Neacsu IA, Grumezescu AM, Andronescu E (2022) New insights of scaffolds based on hydrogels in tissue engineering. Polym 14(4):799CrossRef Radulescu DM, Neacsu IA, Grumezescu AM, Andronescu E (2022) New insights of scaffolds based on hydrogels in tissue engineering. Polym 14(4):799CrossRef
24.
go back to reference Becerra J, Rodriguez M, Leal D, Noris-Suarez K, Gonzalez G (2022) Chitosan-collagen-hydroxyapatite membranes for tissue engineering. J Mater Sci Mater Med 33:18CrossRef Becerra J, Rodriguez M, Leal D, Noris-Suarez K, Gonzalez G (2022) Chitosan-collagen-hydroxyapatite membranes for tissue engineering. J Mater Sci Mater Med 33:18CrossRef
25.
go back to reference Rigogliuso S, Salamone M, Barbarino E, Barbarino M, Nicosia A, Ghersi G (2020) Production of injectable marine collagen-based hydrogel for the maintenance of differentiated chondrocytes in tissue engineering applications. Int J Mol Sci 21(16):5798CrossRef Rigogliuso S, Salamone M, Barbarino E, Barbarino M, Nicosia A, Ghersi G (2020) Production of injectable marine collagen-based hydrogel for the maintenance of differentiated chondrocytes in tissue engineering applications. Int J Mol Sci 21(16):5798CrossRef
26.
go back to reference Amirazad H, Dadashpour M, Zarghami N (2022) Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng 16(1):1CrossRef Amirazad H, Dadashpour M, Zarghami N (2022) Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng 16(1):1CrossRef
27.
go back to reference Sun J, Li J, Li C, Yu Y (2015) Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep 12(3):4230–4237CrossRef Sun J, Li J, Li C, Yu Y (2015) Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep 12(3):4230–4237CrossRef
28.
go back to reference Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD (2019) Smart hydrogels in tissue engineering and regenerative medicine. Mater 12(20):3323CrossRef Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD (2019) Smart hydrogels in tissue engineering and regenerative medicine. Mater 12(20):3323CrossRef
29.
go back to reference Kang M, Lee CS, Lee M (2021) Bioactive scaffolds integrated with liposomal or extracellular vesicles for bone regeneration. Bioeng 8(10):137 Kang M, Lee CS, Lee M (2021) Bioactive scaffolds integrated with liposomal or extracellular vesicles for bone regeneration. Bioeng 8(10):137
30.
go back to reference Geahchan S, Baharlouei P, Rahman A (2022) Marine collagen: a promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Mar Drugs 20:61CrossRef Geahchan S, Baharlouei P, Rahman A (2022) Marine collagen: a promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Mar Drugs 20:61CrossRef
31.
go back to reference Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A (2018) Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg 6(2):90–99 Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A (2018) Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg 6(2):90–99
32.
go back to reference Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS (2021) Bone scaffolds: an incorporation of biomaterials, cells, and biofactors. ACS Biomater Sci Eng 7(12):5397–5431CrossRef Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS (2021) Bone scaffolds: an incorporation of biomaterials, cells, and biofactors. ACS Biomater Sci Eng 7(12):5397–5431CrossRef
33.
go back to reference Yang X, Li Y, Liu X, Huang Q, Zhang R, Feng Q (2018) Incorporation of silica nanoparticles to PLGA electrospun fibers for osteogenic differentiation of human osteoblast-like cells. Regen Biomater 5(4):229–238CrossRef Yang X, Li Y, Liu X, Huang Q, Zhang R, Feng Q (2018) Incorporation of silica nanoparticles to PLGA electrospun fibers for osteogenic differentiation of human osteoblast-like cells. Regen Biomater 5(4):229–238CrossRef
34.
go back to reference Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Mater 12(4):568CrossRef Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Mater 12(4):568CrossRef
35.
go back to reference Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PF, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1(3):216–248CrossRef Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PF, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1(3):216–248CrossRef
36.
go back to reference Perinelli DR, Cespi M, Bonacucina G, Palmieri GF (2019) PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J Pharm Investig 49:443–458CrossRef Perinelli DR, Cespi M, Bonacucina G, Palmieri GF (2019) PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J Pharm Investig 49:443–458CrossRef
37.
go back to reference Carvalho JRG, Conde G, Antonioli ML, Santana CH, Littiere TO, Dias PP, Chinelatto MA, Canola PA, Zara FJ, Ferraz GC (2021) Long-term evaluation of poly(lactic acid) (PLA) implants in a horse: an experimental pilot study. Molecules 26(23):7224CrossRef Carvalho JRG, Conde G, Antonioli ML, Santana CH, Littiere TO, Dias PP, Chinelatto MA, Canola PA, Zara FJ, Ferraz GC (2021) Long-term evaluation of poly(lactic acid) (PLA) implants in a horse: an experimental pilot study. Molecules 26(23):7224CrossRef
38.
go back to reference Cha M, Jin YZ, Park JW, Lee KM, Han SH, Choi BS, Lee JH (2021) Three-dimensional printed polylactic acid scaffold integrated with BMP-2 laden hydrogel for precise bone regeneration. Biomater Res 25:35CrossRef Cha M, Jin YZ, Park JW, Lee KM, Han SH, Choi BS, Lee JH (2021) Three-dimensional printed polylactic acid scaffold integrated with BMP-2 laden hydrogel for precise bone regeneration. Biomater Res 25:35CrossRef
39.
go back to reference Yeo T, Ko Y-G, Kim EJ, Kwon OK, Chung HY, Kwon OH (2020) Promoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds. J Indus Engin Chem 94:343–351CrossRef Yeo T, Ko Y-G, Kim EJ, Kwon OK, Chung HY, Kwon OH (2020) Promoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds. J Indus Engin Chem 94:343–351CrossRef
40.
go back to reference Weng W, Song S, Cao L, Chen X, Cai Y, Li H, Zhou O, Zhang J, Su J (2014) A comparative study of bioartificial bone tissue poly-l-lactic acid/polycaprolactone and plla scaffolds applied in bone regeneration. J Nanomater 2014:935149CrossRef Weng W, Song S, Cao L, Chen X, Cai Y, Li H, Zhou O, Zhang J, Su J (2014) A comparative study of bioartificial bone tissue poly-l-lactic acid/polycaprolactone and plla scaffolds applied in bone regeneration. J Nanomater 2014:935149CrossRef
41.
go back to reference Kim D-S, Lee J-K, Jung J-W, Baek S-W, Kim JH, Heo Y, Kim T-H, Han DK (2021) Promotion of bone regeneration using bioinspired PLGA/MH/ECM scaffold combined with bioactive PDRN. Materials 14:4149CrossRef Kim D-S, Lee J-K, Jung J-W, Baek S-W, Kim JH, Heo Y, Kim T-H, Han DK (2021) Promotion of bone regeneration using bioinspired PLGA/MH/ECM scaffold combined with bioactive PDRN. Materials 14:4149CrossRef
42.
go back to reference Zhang Y, Wang C, Fu L, Ye S, Wang M, Zhou Y (2019) Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and osteogenic peptide by cryogenic 3d printing for repairing critical-sized bone defect. Molecules 24(9):1–20CrossRef Zhang Y, Wang C, Fu L, Ye S, Wang M, Zhou Y (2019) Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and osteogenic peptide by cryogenic 3d printing for repairing critical-sized bone defect. Molecules 24(9):1–20CrossRef
43.
go back to reference Lagoa A, Wedemeyer C, von Knoch M, Löer F, Epple M (2008) A strut graft substitute consisting of ametal core and a polymer surface. J Mater Sci Mater Med 19(1):417–424 Lagoa A, Wedemeyer C, von Knoch M, Löer F, Epple M (2008) A strut graft substitute consisting of ametal core and a polymer surface. J Mater Sci Mater Med 19(1):417–424
Metadata
Title
Polymeric Biodegradable Biomaterials for Tissue Bioengineering and Bone Rejuvenation
Authors
Eribe M. Jonathan
Andrew O. Ohifuemen
Jacob N. Jacob
Aaron Y. Isaac
Ikhazuagbe H. Ifijen
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-22524-6_25

Premium Partners