Skip to main content
Top

2023 | OriginalPaper | Chapter

Polynomial Neural Network Approximation of Duffing Equation Solution

Authors : Tatiana V. Lazovskaya, Galina F. Malykhina, Dmitriy M. Pashkovskiy, Dmitriy A. Tarkhov

Published in: Cyber-Physical Systems and Control II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article considers the problem of neural network approximating the solution of the Cauchy problem for a higher order ordinary differential equation. Adaptive approximations of this kind are useful for using as mathematical models of dynamic objects in the creation and adaptation of cyber-physical systems. The approximation scheme is based on the Taylor expansion of the solution with a remainder in the Lagrange form. Furtheron, the second derivative of the solution in the remainder expression is sought in the form of the output of a neural network with a radial basis function (RBF). An algorithm this RBF network training for (selecting the optimal parameters) based on solution data at selected points is presented herein. These data simulate measurements that can be obtained by observing the real object. The algorithm’s main idea involves utilizing the clusterisation for the adjustment of nonlinear input parameters (centres and Gaussian rates of decrease) and pseudoinverse matrix applying for linear input parameters selection. On the example of solving the Cauchy problem for a second order non-linear differential equation, i.e., the Duffing oscillator, a comparison of various approximation schemes is carried out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rasheed, A., San, O., Kvamsdal, T.: Digital twin: Values, challenges and enablers from A modeling perspective. IEEE Access 8, 21980–22012 (2020)CrossRef Rasheed, A., San, O., Kvamsdal, T.: Digital twin: Values, challenges and enablers from A modeling perspective. IEEE Access 8, 21980–22012 (2020)CrossRef
2.
go back to reference Rai, R., Sahu, C.K.: Driven by data or derived through physics? A review of hybrid physics guided machine learning techniques with cyber-physical system (CPS) focus. IEEE Access 8, 71050–71073 (2020)CrossRef Rai, R., Sahu, C.K.: Driven by data or derived through physics? A review of hybrid physics guided machine learning techniques with cyber-physical system (CPS) focus. IEEE Access 8, 71050–71073 (2020)CrossRef
3.
go back to reference Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 5(9), 987–1000 (1998)CrossRef Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 5(9), 987–1000 (1998)CrossRef
4.
go back to reference Kumar, M., Yadav, N.: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey. Comput. Math. Appl. 62, 3796–3811 (2011)CrossRefMATH Kumar, M., Yadav, N.: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey. Comput. Math. Appl. 62, 3796–3811 (2011)CrossRefMATH
5.
go back to reference Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Num. Meth. Eng. 6(92), 824–852 (2005) Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Num. Meth. Eng. 6(92), 824–852 (2005)
7.
go back to reference Tarkhov, D., Vasilyev, A.: Semi-empirical Neural Network Modeling and Digital Twins Development. Academic Press (2020) Tarkhov, D., Vasilyev, A.: Semi-empirical Neural Network Modeling and Digital Twins Development. Academic Press (2020)
8.
go back to reference Zhang, M., Drikakis, D., Li, L., Yan, X.: Machine-learning prediction of underwater shock loading on structures. Computation 7(4), 58 (2019)CrossRef Zhang, M., Drikakis, D., Li, L., Yan, X.: Machine-learning prediction of underwater shock loading on structures. Computation 7(4), 58 (2019)CrossRef
10.
go back to reference Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)CrossRefMATH Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)CrossRefMATH
11.
go back to reference Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505–8510 (2018)CrossRefMATH Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505–8510 (2018)CrossRefMATH
12.
go back to reference Raissi, M.: Forward-backward stochastic neural networks: deep learning of high-dimensional partial differential equations (2018). arXiv preprint :1804.07010 Raissi, M.: Forward-backward stochastic neural networks: deep learning of high-dimensional partial differential equations (2018). arXiv preprint :1804.07010
13.
go back to reference Sirignano, J., Spiliopoulos, K.: Dgm: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)CrossRefMATH Sirignano, J., Spiliopoulos, K.: Dgm: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)CrossRefMATH
14.
go back to reference Hairer, E., Nor sett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problem, vol. 8. Springer Series in Computational Mathematics (1993) Hairer, E., Nor sett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problem, vol. 8. Springer Series in Computational Mathematics (1993)
15.
go back to reference Haykin, S.O.: Neural Networks: A Comprehensive Foundation, 2nd edn. McMaster University, Ontario Canada (1999) Haykin, S.O.: Neural Networks: A Comprehensive Foundation, 2nd edn. McMaster University, Ontario Canada (1999)
16.
go back to reference Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)MATH Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)MATH
17.
go back to reference Linde, Y., Buzo, A., Gray, R.: An Algorithm for vector quantizer design. IEEE Trans. Commun. 1(28), 84–95 (1980)CrossRef Linde, Y., Buzo, A., Gray, R.: An Algorithm for vector quantizer design. IEEE Trans. Commun. 1(28), 84–95 (1980)CrossRef
18.
go back to reference Nayfeh, A.: Problems in Perturbation. John Wiley and Sons (1985) Nayfeh, A.: Problems in Perturbation. John Wiley and Sons (1985)
19.
go back to reference Yang, X., Li, Z., Dahhou, B.: Parameter and state estimation for uncertain nonlinear systems by adaptive observer based on differential evolution algorithm. Appl. Sci. 10, 5857 (2020)CrossRef Yang, X., Li, Z., Dahhou, B.: Parameter and state estimation for uncertain nonlinear systems by adaptive observer based on differential evolution algorithm. Appl. Sci. 10, 5857 (2020)CrossRef
20.
go back to reference Pang, G., D'Elia, M., Parks, M. and Karniadakis, G.E.: nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator: Algorithms and applications. J. Comput. Phys. 422(2020) Pang, G., D'Elia, M., Parks, M. and Karniadakis, G.E.: nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator: Algorithms and applications. J. Comput. Phys. 422(2020)
21.
go back to reference Sands, T.: Nonlinear-adaptive mathematical system identification. Computation 5(47) (2017) Sands, T.: Nonlinear-adaptive mathematical system identification. Computation 5(47) (2017)
22.
go back to reference Zhang, X., Ding, F.: Adaptive parameter estimation for a general dynamical system with unknown states. Int. J. Robust Nonlinear Control. 30(4), 1351–1372 (2020)CrossRefMATH Zhang, X., Ding, F.: Adaptive parameter estimation for a general dynamical system with unknown states. Int. J. Robust Nonlinear Control. 30(4), 1351–1372 (2020)CrossRefMATH
23.
go back to reference Lazovskaya, T., Tarkhov, D.: Multilayer neural network models based on grid methods. IOP Conf. Ser. Mater. Sci. Eng. 158(1) (2016) Lazovskaya, T., Tarkhov, D.: Multilayer neural network models based on grid methods. IOP Conf. Ser. Mater. Sci. Eng. 158(1) (2016)
25.
Metadata
Title
Polynomial Neural Network Approximation of Duffing Equation Solution
Authors
Tatiana V. Lazovskaya
Galina F. Malykhina
Dmitriy M. Pashkovskiy
Dmitriy A. Tarkhov
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20875-1_52

Premium Partner