Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Polyols and Polyurethanes from Protein-Based Feedstocks

Authors : Yebo Li, Xiaolan Luo, Shengjun Hu

Published in: Bio-based Polyols and Polyurethanes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Feedstocks that have high protein contents, such as soy protein, are promising materials for extensive polyol and polyurethane (PU) applications, such as foams, films, and coatings, due to the characteristic structures and properties of proteins. Currently, most research has been focused on the direct use of these protein-based feedstocks in combination with polymers for PU production. Although proteins have multiple reactive functional groups, such as amino and carboxyl groups, reports on the modification of protein-based feedstocks for the production of liquid polyols are limited. This chapter reviews sources, compositions, structures, and processing of protein-based feedstocks; synthetic methods and properties of protein-based polyols; and performance and applications of the derived PUs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schulz GE, Schirmer RH (1979) Principles of protein structure. Springer, BerlinCrossRef Schulz GE, Schirmer RH (1979) Principles of protein structure. Springer, BerlinCrossRef
2.
go back to reference Hettiarachchy N, Kalapathy U (1997) Soybean protein products. In: Liu K (ed) Soybeans: chemistry, technology, and utilization. International Thomson Publishing, Singapore Hettiarachchy N, Kalapathy U (1997) Soybean protein products. In: Liu K (ed) Soybeans: chemistry, technology, and utilization. International Thomson Publishing, Singapore
3.
go back to reference Wool R, Sun XS (2011) Bio-based polymers and composites. Elsevier, London Wool R, Sun XS (2011) Bio-based polymers and composites. Elsevier, London
4.
go back to reference Mu Y, Wan X, Han Z, Peng Y, Zhong S (2012) Rigid polyurethane foams based on activated soybean meal. J Appl Polym Sci 124:4331–4338CrossRef Mu Y, Wan X, Han Z, Peng Y, Zhong S (2012) Rigid polyurethane foams based on activated soybean meal. J Appl Polym Sci 124:4331–4338CrossRef
5.
go back to reference Kumar R, Choudhary V, Mishra S, Varma IK, Mattiason B (2002) Adhesives and plastics based on soy protein products. Ind Crop Prod 16:155–172CrossRef Kumar R, Choudhary V, Mishra S, Varma IK, Mattiason B (2002) Adhesives and plastics based on soy protein products. Ind Crop Prod 16:155–172CrossRef
6.
go back to reference Kinsella JE (1979) Functional properties of soy proteins. J Am Oil Chem Soc 56:242–258CrossRef Kinsella JE (1979) Functional properties of soy proteins. J Am Oil Chem Soc 56:242–258CrossRef
7.
go back to reference Zhang L, Chen P, Huang J, Yang G, Zheng L (2003) Ways of strengthening biodegradable soy-dreg plastics. J Appl Polym Sci 88:422–427CrossRef Zhang L, Chen P, Huang J, Yang G, Zheng L (2003) Ways of strengthening biodegradable soy-dreg plastics. J Appl Polym Sci 88:422–427CrossRef
8.
go back to reference Lim TK (2012) Glycine max. Edible medicinal and non-medicinal plants. Springer, Netherlands, pp 634–714 Lim TK (2012) Glycine max. Edible medicinal and non-medicinal plants. Springer, Netherlands, pp 634–714
9.
go back to reference Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13:171–192CrossRef Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13:171–192CrossRef
10.
go back to reference Anderson TJ, Lamsal BP (2011) Zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chem 88:159–173CrossRef Anderson TJ, Lamsal BP (2011) Zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chem 88:159–173CrossRef
11.
go back to reference Kuktaite R, Türe H, Hedenqvist MS, Gällstedt M, Plivelic TS (2014) The gluten biopolymer and nano-clay derived structures in wheat gluten-urea-clay composites: relation to barrier and mechanical properties. ACS Sustain Chem Eng 2:1439–1445CrossRef Kuktaite R, Türe H, Hedenqvist MS, Gällstedt M, Plivelic TS (2014) The gluten biopolymer and nano-clay derived structures in wheat gluten-urea-clay composites: relation to barrier and mechanical properties. ACS Sustain Chem Eng 2:1439–1445CrossRef
12.
13.
go back to reference Xu J, Bietz JA, Carriere CJ (2007) Viscoelastic properties of wheat gliadin and glutenin suspensions. Food Chem 101:1025–1030CrossRef Xu J, Bietz JA, Carriere CJ (2007) Viscoelastic properties of wheat gliadin and glutenin suspensions. Food Chem 101:1025–1030CrossRef
14.
go back to reference Domenek S, Feuilloley P, Gratraud J, Morel MH, Guilbert S (2004) Biodegradability of wheat gluten based bioplastics. Chemosphere 54:551–559CrossRef Domenek S, Feuilloley P, Gratraud J, Morel MH, Guilbert S (2004) Biodegradability of wheat gluten based bioplastics. Chemosphere 54:551–559CrossRef
15.
16.
go back to reference Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotech Adv 20:491–515CrossRef Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotech Adv 20:491–515CrossRef
17.
go back to reference Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energ Res 35:291–311CrossRef Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energ Res 35:291–311CrossRef
18.
go back to reference Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, de Nys R (2014) Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour Technol 155:334–341CrossRef Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, de Nys R (2014) Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour Technol 155:334–341CrossRef
19.
go back to reference Li H, Liu Z, Zhang Y, Li B, Lu H, Duan N, Liu M, Zhu Z, Si B (2014) Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresour Technol 154:322–329CrossRef Li H, Liu Z, Zhang Y, Li B, Lu H, Duan N, Liu M, Zhu Z, Si B (2014) Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresour Technol 154:322–329CrossRef
20.
go back to reference Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48CrossRef Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48CrossRef
21.
go back to reference Beckman EJ, Russell AJ (1996) Protein-containing polymers and a method of synthesis of protein-containing polymers in organic solvents. US Patent 5482996 Beckman EJ, Russell AJ (1996) Protein-containing polymers and a method of synthesis of protein-containing polymers in organic solvents. US Patent 5482996
22.
go back to reference Narayan R, Hablot E, Graiver D, Sendijarevic V (2014) Soy meal-based polyols for rigid polyurethane foams. PU Mag 11(3) Narayan R, Hablot E, Graiver D, Sendijarevic V (2014) Soy meal-based polyols for rigid polyurethane foams. PU Mag 11(3)
23.
go back to reference Kumar S, Hablot E, Moscoso JLG, Obeid W, Hatcher PG, DuQuette BM, Graiver D, Narayan R, Balan V (2014) Polyurethane preparation using proteins obtained from microalgae. J Mater Sci 49:7824–7833CrossRef Kumar S, Hablot E, Moscoso JLG, Obeid W, Hatcher PG, DuQuette BM, Graiver D, Narayan R, Balan V (2014) Polyurethane preparation using proteins obtained from microalgae. J Mater Sci 49:7824–7833CrossRef
24.
go back to reference Yu F, Le Z, Chen P, Liu Y, Lin X, Ruan R (2008) Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG. Appl Biochem Biotechnol 148:235–243CrossRef Yu F, Le Z, Chen P, Liu Y, Lin X, Ruan R (2008) Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG. Appl Biochem Biotechnol 148:235–243CrossRef
25.
go back to reference Chang LC, Xue Y, Hsieh FH (2001) Comparative study of physical properties of water-blown rigid polyurethane foams extended with commercial soy flours. J Appl Polym Sci 80:10–19CrossRef Chang LC, Xue Y, Hsieh FH (2001) Comparative study of physical properties of water-blown rigid polyurethane foams extended with commercial soy flours. J Appl Polym Sci 80:10–19CrossRef
26.
go back to reference Lin Y, Hsieh F, Huff HE, Iannotti E (1996) Physical, mechanical, and thermal properties of water-blown rigid polyurethane foam containing soy protein isolate. Cereal Chem 73:189–196 Lin Y, Hsieh F, Huff HE, Iannotti E (1996) Physical, mechanical, and thermal properties of water-blown rigid polyurethane foam containing soy protein isolate. Cereal Chem 73:189–196
27.
go back to reference Lin Y, Hsieh F, Huff HE (1997) Water-blown flexible polyurethane foam extended with biomass materials. J Appl Polym Sci 65:695–703CrossRef Lin Y, Hsieh F, Huff HE (1997) Water-blown flexible polyurethane foam extended with biomass materials. J Appl Polym Sci 65:695–703CrossRef
28.
go back to reference Park SK, Hettiarachchy NS (1999) Physical and mechanical properties of soy protein-based plastic foams. J Am Oil Chem Soc 76:1201–1205CrossRef Park SK, Hettiarachchy NS (1999) Physical and mechanical properties of soy protein-based plastic foams. J Am Oil Chem Soc 76:1201–1205CrossRef
29.
go back to reference Song F, Tang DL, Wang XL, Wang YZ (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromolecules 12:3369–3380CrossRef Song F, Tang DL, Wang XL, Wang YZ (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromolecules 12:3369–3380CrossRef
30.
go back to reference Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mater Bioenergy 2:1–24CrossRef Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mater Bioenergy 2:1–24CrossRef
31.
go back to reference Liu D, Tian H, Zhang L, Chang PR (2008) Structure and properties of blend films prepared from castor oil-based polyurethane/soy protein derivative. Ind Eng Chem Res 47:9330–9336CrossRef Liu D, Tian H, Zhang L, Chang PR (2008) Structure and properties of blend films prepared from castor oil-based polyurethane/soy protein derivative. Ind Eng Chem Res 47:9330–9336CrossRef
32.
go back to reference Tian H, Wang Y, Zhang L, Quan C, Zhang X (2010) Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind Crop Prod 32:13–20CrossRef Tian H, Wang Y, Zhang L, Quan C, Zhang X (2010) Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind Crop Prod 32:13–20CrossRef
33.
go back to reference Zhang M, Song F, Wang XL, Wang YZ (2012) Development of soy protein isolate/waterborne polyurethane blend films with improved properties. Colloids Surf B Biointerfaces 100:16–21CrossRef Zhang M, Song F, Wang XL, Wang YZ (2012) Development of soy protein isolate/waterborne polyurethane blend films with improved properties. Colloids Surf B Biointerfaces 100:16–21CrossRef
34.
go back to reference Zhong N, Yuan Q (2013) Preparation and properties of molded blends of wheat gluten and cationic water-borne polyurethanes. J Appl Polym Sci 128:460–469CrossRef Zhong N, Yuan Q (2013) Preparation and properties of molded blends of wheat gluten and cationic water-borne polyurethanes. J Appl Polym Sci 128:460–469CrossRef
35.
go back to reference Wright NC, Li J, Guo M (2006) Microstructural and mold resistant properties of environment-friendly oil-modified polyurethane based wood-finish products containing polymerized whey proteins. J Appl Polym Sci 100:3519–3530CrossRef Wright NC, Li J, Guo M (2006) Microstructural and mold resistant properties of environment-friendly oil-modified polyurethane based wood-finish products containing polymerized whey proteins. J Appl Polym Sci 100:3519–3530CrossRef
36.
go back to reference Madbouly SA, Lendlein A (2012) Degradable polyurethane/soy protein shape-memory polymer bBlends prepared via environmentally-friendly aqueous dispersions. Macromol Mater Eng 297:1213–1224CrossRef Madbouly SA, Lendlein A (2012) Degradable polyurethane/soy protein shape-memory polymer bBlends prepared via environmentally-friendly aqueous dispersions. Macromol Mater Eng 297:1213–1224CrossRef
37.
go back to reference Chen Y, Zhang L, Du L (2003) Structure and properties of composites compression-molded from polyurethane prepolymer and various soy products. Ind Eng Chem Res 42:6786–6794CrossRef Chen Y, Zhang L, Du L (2003) Structure and properties of composites compression-molded from polyurethane prepolymer and various soy products. Ind Eng Chem Res 42:6786–6794CrossRef
38.
go back to reference Chen Y, Zhang L, Deng R, Cui Y (2007) A new network composite material based on soy dreg modified with polyurethane prepolymer. Macromol Mater Eng 292:484–494CrossRef Chen Y, Zhang L, Deng R, Cui Y (2007) A new network composite material based on soy dreg modified with polyurethane prepolymer. Macromol Mater Eng 292:484–494CrossRef
39.
go back to reference Sessa DJ, Cheng HN, Kim S, Selling GW, Biswas A (2013) Zein-based polymers formed by modifications with isocyanates. Ind Crop Prod 43:106–113CrossRef Sessa DJ, Cheng HN, Kim S, Selling GW, Biswas A (2013) Zein-based polymers formed by modifications with isocyanates. Ind Crop Prod 43:106–113CrossRef
40.
go back to reference Gómez EF, Luo X, Li C, Michel FC Jr, Li Y (2014) Biodegradability of crude glycerol-based polyurethane foams during composting, anaerobic digestion and soil incubation. Polym Degrad Stab 102:195–203CrossRef Gómez EF, Luo X, Li C, Michel FC Jr, Li Y (2014) Biodegradability of crude glycerol-based polyurethane foams during composting, anaerobic digestion and soil incubation. Polym Degrad Stab 102:195–203CrossRef
41.
go back to reference Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155CrossRef Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155CrossRef
42.
go back to reference Wang G, Zhou A (2011) Soy protein based biodegradable flexible polyurethane foam. Adv Mater Res 152:1862–1865CrossRef Wang G, Zhou A (2011) Soy protein based biodegradable flexible polyurethane foam. Adv Mater Res 152:1862–1865CrossRef
Metadata
Title
Polyols and Polyurethanes from Protein-Based Feedstocks
Authors
Yebo Li
Xiaolan Luo
Shengjun Hu
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-21539-6_4

Premium Partners