Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

24-06-2020 | Original Paper | Issue 10/2020

Bulletin of Engineering Geology and the Environment 10/2020

Ponded infiltration and spatial–temporal prediction of the water content of silty mudstone

Journal:
Bulletin of Engineering Geology and the Environment > Issue 10/2020
Authors:
Ling Zeng, Xiaofei Yao, Junhui Zhang, Qian-Feng Gao, Jingcheng Chen, Yutong Gui

Abstract

Ponded infiltration is very common in silty mudstone and has a great influence on the stability of related slopes, road cuttings, and tunnels. This paper aims to examine the infiltration performance of silty mudstone and predict the distribution of its water content under ponded conditions. By infiltration tests, the infiltration rate (i), cumulative infiltration (I), and their variations with the infiltration time (t) were obtained. Afterward, the variation of water content (w) with t and depth (s) was analyzed. The results show that the i value decreases with the increase in the degree of saturation, and the I value increases first significantly and then slightly during water infiltration. The entire wt curve at any s is S-shaped, while the ws curve at any t is full or half inverse-S-shaped. In addition, an equation was developed for the ws prediction based on the simplified Gompertz curve model, and it was further extended to the spatial–temporal prediction model of water content. The evaluation results demonstrate that the spatial–temporal prediction model has high accuracy and reliability. The prediction model also indicates that the range of the infiltration-affected zone increases and the rate of increase slows down during water infiltration.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 10/2020

Bulletin of Engineering Geology and the Environment 10/2020 Go to the issue