Skip to main content
Top

2021 | OriginalPaper | Chapter

Pore-Scale Numerical Modeling Tools for Improving Efficiency of Direct Carbon Capture in Compacts

Authors : Ravi A. Patel, Nikolaos I. Prasianakis

Published in: Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbonate bonded materials are considered to be a viable alternative to reduce carbon emission from cement industry. Such materials are carbon emission negative since they sequestrate CO2 through carbonaQtion reaction and present potential of making commercial profit. However, carbonation reaction depends on several factors such as pore structure, particle size distribution, relative humidity, temperature, CO2 gas pressure, etc. The design of carbonate bonded materials requires a fine tuning of these parameters which is preliminary done through extensive experimental campaigns. Here we present an alternative approach of in-silico based design of carbon bonded material, where microstructure modeling plays a central role in the design process. Finally, a newly developed microstructure modeling framework is presented. This framework utilizes the discrete element method to generate the initial compact structure, the lattice Boltzmann method to compute the equilibrium distribution of liquid and gas phase, and as a last step a cellular automation-based model for evolution of microstructure due to the carbonation reaction. The model qualitatively reproduces the experimental observations thus providing confidence in our modeling approach. Quantitive comparison with experiments available in the literature and further refinement of the model is ongoing. The developed microstructure modeling framework is foreseen as a valuable tool for designing carbon bonded materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Solidia®: Making Sustainability Business As Usual SM. https://www.solidiatech.com/. (n.d.). Accessed 31 Jan 2020 Solidia®: Making Sustainability Business As Usual SM. https://​www.​solidiatech.​com/​.​ (n.d.). Accessed 31 Jan 2020
3.
go back to reference Carbonation|Orbix: https://www.orbix.be/en/technologies/carbonation. (n.d.). Accessed 31 Jan 2020. Carbonation|Orbix: https://​www.​orbix.​be/​en/​technologies/​carbonation.​ (n.d.). Accessed 31 Jan 2020.
4.
go back to reference Nielsen, P., Baciocchi, R., Costa, G., Quaghebeur, M., Snellings, R.: Carbonate-bonded construction materials from alkaline residues. RILEM Tech. Lett. 2, 53–58 (2017)CrossRef Nielsen, P., Baciocchi, R., Costa, G., Quaghebeur, M., Snellings, R.: Carbonate-bonded construction materials from alkaline residues. RILEM Tech. Lett. 2, 53–58 (2017)CrossRef
5.
go back to reference Thomas, J., Biernacki, J., Bullard, J.: Modeling and simulation of cement hydration kinetics and microstructure development. Cem. Concr. Res. 41, 1257–1278 (2011)CrossRef Thomas, J., Biernacki, J., Bullard, J.: Modeling and simulation of cement hydration kinetics and microstructure development. Cem. Concr. Res. 41, 1257–1278 (2011)CrossRef
6.
go back to reference Patel, R.A., Perko, J., Jacques, D., De Schutter, G., Ye, G., Van Bruegel, K.: Effective diffusivity of cement pastes from virtual microstructures: role of gel porosity and capillary pore percolation. Constr. Build. Mater. 165, 833–845 (2018)CrossRef Patel, R.A., Perko, J., Jacques, D., De Schutter, G., Ye, G., Van Bruegel, K.: Effective diffusivity of cement pastes from virtual microstructures: role of gel porosity and capillary pore percolation. Constr. Build. Mater. 165, 833–845 (2018)CrossRef
7.
go back to reference Zhang, M., Ye, G., Van Breugel, K.: Microstructure-based modeling of permeability of cementitious materials using multiple-relaxation-time lattice Boltzmann method. Comput. Mater. Sci. 68, 142–151 (2013)CrossRef Zhang, M., Ye, G., Van Breugel, K.: Microstructure-based modeling of permeability of cementitious materials using multiple-relaxation-time lattice Boltzmann method. Comput. Mater. Sci. 68, 142–151 (2013)CrossRef
8.
go back to reference Zalzale, M., McDonald, P.J., Scrivener, K.L.: A 3D lattice Boltzmann effective media study: understanding the role of C-S-H and water saturation on the permeability of cement paste. Model. Simul. Mater. Sci. Eng. 21, 085016 (2013)CrossRef Zalzale, M., McDonald, P.J., Scrivener, K.L.: A 3D lattice Boltzmann effective media study: understanding the role of C-S-H and water saturation on the permeability of cement paste. Model. Simul. Mater. Sci. Eng. 21, 085016 (2013)CrossRef
9.
go back to reference Smilauer, V., Bittnar, Z.K.: Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste. Cem. Concr. Res. 36, 1708‒1718 (2006) Smilauer, V., Bittnar, Z.K.: Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste. Cem. Concr. Res. 36, 1708‒1718 (2006)
10.
go back to reference Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)CrossRef Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)CrossRef
11.
go back to reference Kozicki, J: YADE-OPEN DEM : An Open—Source Software Using a Discrete Element Method to Simulate Granular Material pp. 1–19 (2008) Kozicki, J: YADE-OPEN DEM : An Open—Source Software Using a Discrete Element Method to Simulate Granular Material pp. 1–19 (2008)
13.
go back to reference Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E. 49, 2941–2948 (1994)CrossRef Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E. 49, 2941–2948 (1994)CrossRef
16.
go back to reference Bentz, D.P., Coveney, P.V., Garboczi, E.J., Kleyn, M.F., Stutzman, P.E.: Cellular automaton simulations of cement hydration and microstructure development. Model. Simul. Mater. Sci. Eng. 2, 783 (1994)CrossRef Bentz, D.P., Coveney, P.V., Garboczi, E.J., Kleyn, M.F., Stutzman, P.E.: Cellular automaton simulations of cement hydration and microstructure development. Model. Simul. Mater. Sci. Eng. 2, 783 (1994)CrossRef
17.
go back to reference Patel, R.A., Churakov, S.V., Prasianakis, N.I.: A multi-level pore scale reactive transport model for the investigation of combined leaching and carbonation of cement paste. Cem. Concr. Compos. (under rev 2020) Patel, R.A., Churakov, S.V., Prasianakis, N.I.: A multi-level pore scale reactive transport model for the investigation of combined leaching and carbonation of cement paste. Cem. Concr. Compos. (under rev 2020)
18.
go back to reference Patel, R.A., Prasianakis, N.I.: Development of pore-scale model for ingress of CO2 brine through cement paste. In: SynerCrete’18 International Conference of Interdisciplinary Approaches for Cement based Materials and Structural Concrete, Funchal, Maderia, Portugal (2018) Patel, R.A., Prasianakis, N.I.: Development of pore-scale model for ingress of CO2 brine through cement paste. In: SynerCrete’18 International Conference of Interdisciplinary Approaches for Cement based Materials and Structural Concrete, Funchal, Maderia, Portugal (2018)
19.
go back to reference 19. Chen, L., Kang, Q., Tang, Q., Robinson, B.A., He, Y.-L., Tao, W.-Q.: Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. Int. J. Heat Mass Trans. 85, 935‒949 (2014) 19. Chen, L., Kang, Q., Tang, Q., Robinson, B.A., He, Y.-L., Tao, W.-Q.: Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. Int. J. Heat Mass Trans. 85, 935‒949 (2014)
20.
go back to reference Quaghebeur, M., Nielsen, P., Horckmans, L., Van Mechelen, D.: Accelerated carbonation of steel slag compacts: development of high-strength construction materials. Front. Energy Res. 3 (2015) Quaghebeur, M., Nielsen, P., Horckmans, L., Van Mechelen, D.: Accelerated carbonation of steel slag compacts: development of high-strength construction materials. Front. Energy Res. 3 (2015)
Metadata
Title
Pore-Scale Numerical Modeling Tools for Improving Efficiency of Direct Carbon Capture in Compacts
Authors
Ravi A. Patel
Nikolaos I. Prasianakis
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-76551-4_13