Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Interceram - International Ceramic Review 3/2020

01-07-2020 | Research and Development

Porogenesis in the Alumina-Brucite-Magnesia-Spinel System

Authors: Rafael Salomão, Isadora Medeiros de Morais Dias, Leandro Fernandes

Published in: Interceram - International Ceramic Review | Issue 3/2020

Login to get access
share
SHARE

Abstract

Abstract: Magnesium monoaluminate spinel (MgAl2O4) is an important raw material for the refractory industry, and its in-situ formation from Al2O3 and MgO sources is an expansive process due to its low density. Such an expansion can be a serious drawback for the production of dense structural bricks and castables, since it frequently causes deformations and cracks and hinders particles from sintering. On the other hand, the same effects can be useful for the production of porous structures used in applications that require densification-resistance and high porosity levels (e.g., thermal insulators and hot-air filters). In this study, calcined alumina and mixtures of magnesium hydroxide (Mg(OH)2 or brucite) and magnesium oxide (MgO or magnesia) were combined with the aim of maximizing the generation of pores after brucite dehydroxylation and volumetric expansion during spinel formation.
Literature
[1]
go back to reference Deng, Y., Fukasawa, T., Ando, M.: Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide. J. Am. Cer. Soc. 84 (2001) [11] 2638-2644. Deng, Y., Fukasawa, T., Ando, M.: Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide. J. Am. Cer. Soc. 84 (2001) [11] 2638-2644.
[2]
go back to reference Tang, F., Fudozi, H., Sakka, Y.: Fabrication of macroporous alumina with tailored porosity. J. Am. Cer. Soc. 86 (2003) [12] 2050-2054. Tang, F., Fudozi, H., Sakka, Y.: Fabrication of macroporous alumina with tailored porosity. J. Am. Cer. Soc. 86 (2003) [12] 2050-2054.
[3]
go back to reference Salomão, R., Brandi, J.: Macrostructures with hierarchical porosity produced from Al 2O 3-Al(OH) 3-chitosan wet-spun fibers. Ceram. Int. 39 (2013) [7] 8227-8235. Salomão, R., Brandi, J.: Macrostructures with hierarchical porosity produced from Al 2O 3-Al(OH) 3-chitosan wet-spun fibers. Ceram. Int. 39 (2013) [7] 8227-8235.
[4]
go back to reference Souza, A.D.V., Arruda, C.C., Fernandes, L., Antunes, M.L.P., Kiyohara, P.K., Salomão, R.: Characterization of aluminum hydroxide (Al(OH) 3) for its use as a porogenic agent in castable ceramics. J. Eur. Ceram. Soc. 35 (2015) [2] 803-812. Souza, A.D.V., Arruda, C.C., Fernandes, L., Antunes, M.L.P., Kiyohara, P.K., Salomão, R.: Characterization of aluminum hydroxide (Al(OH) 3) for its use as a porogenic agent in castable ceramics. J. Eur. Ceram. Soc. 35 (2015) [2] 803-812.
[5]
go back to reference Souza, A.D.V., Sousa, L.L., Fernandes, L., Cardoso, P.H.L., Salomão, R.: Al 2O 3-Al(OH) 3-Based castable porous structures. J. Eur. Ceram. Soc. 35 (2015) [6] 1943-1954. Souza, A.D.V., Sousa, L.L., Fernandes, L., Cardoso, P.H.L., Salomão, R.: Al 2O 3-Al(OH) 3-Based castable porous structures. J. Eur. Ceram. Soc. 35 (2015) [6] 1943-1954.
[6]
go back to reference Souza, A.D.V., Sousa, Salomão, R.: Evaluation of the porogenic behavior of aluminum hydroxide particles of different size distributions in castable high-alumina structure. J. Eur. Ceram. Soc. 36 (2016) [3] 885-897. Souza, A.D.V., Sousa, Salomão, R.: Evaluation of the porogenic behavior of aluminum hydroxide particles of different size distributions in castable high-alumina structure. J. Eur. Ceram. Soc. 36 (2016) [3] 885-897.
[7]
go back to reference Deng, Z.Y., Fukasawa, T., Ando, M.: High-surface-area alumina ceramics fabricated by the decomposition of Al(OH) 3. J. Am. Cer. Soc. 84 (2001) [3] 485-491. Deng, Z.Y., Fukasawa, T., Ando, M.: High-surface-area alumina ceramics fabricated by the decomposition of Al(OH) 3. J. Am. Cer. Soc. 84 (2001) [3] 485-491.
[8]
go back to reference Bhattacharya, I.N., Das, S.C., Mukherjee, P.S., Paul, S., Mitra, P.K.: Thermal decomposition of precipitated fine aluminium trihydroxide. Scand. J. Met. 33 (2004) [4] 211-219. Bhattacharya, I.N., Das, S.C., Mukherjee, P.S., Paul, S., Mitra, P.K.: Thermal decomposition of precipitated fine aluminium trihydroxide. Scand. J. Met. 33 (2004) [4] 211-219.
[9]
go back to reference Salomão, R., Kawamura, M.A., Souza, A.D.V., Sakihama, J.: Hydratable Alumina-Bonded Suspensions: Evolution of Microstructure and Physical Properties During First Heating. InterCeram: International Ceramic Review, 66 (2017) [7] 28-37. Salomão, R., Kawamura, M.A., Souza, A.D.V., Sakihama, J.: Hydratable Alumina-Bonded Suspensions: Evolution of Microstructure and Physical Properties During First Heating. InterCeram: International Ceramic Review, 66 (2017) [7] 28-37.
[10]
go back to reference Salomão, R. Villas-Bôas, M.O.C., Pandolfelli, V.C.: Alumina-spinel porous ceramics for high temperature applications, Ceram. Int. Ceramics International 37 (2011) 1393-1399. Salomão, R. Villas-Bôas, M.O.C., Pandolfelli, V.C.: Alumina-spinel porous ceramics for high temperature applications, Ceram. Int. Ceramics International 37 (2011) 1393-1399.
[11]
go back to reference Li, S., Li, N., Li, Y.: Processing and microstructure characterization of porous corundum-spinel ceramics prepared by in istu decompositions pore-forming technique. Ceram. Int. 34 (2008) [5] 1241-1246. Li, S., Li, N., Li, Y.: Processing and microstructure characterization of porous corundum-spinel ceramics prepared by in istu decompositions pore-forming technique. Ceram. Int. 34 (2008) [5] 1241-1246.
[12]
go back to reference Shah, S.R., Chokshi, A.H., Raj, R.: Porous Al 2O 3-spinel based polycrystals that resist free-sintering. J. Am. Cer. Soc. 91 (2008) [10] 3451-3454. Shah, S.R., Chokshi, A.H., Raj, R.: Porous Al 2O 3-spinel based polycrystals that resist free-sintering. J. Am. Cer. Soc. 91 (2008) [10] 3451-3454.
[13]
go back to reference Salomão, R., Souza, A.D.V., Cardoso, P.H.L.: A comparison of Al(OH) 3 and Mg(OH) 2 as inorganic porogenic agents for alumina. Interceram: Int. Cer. Rev. 64 (2015) [4] 193-199. Salomão, R., Souza, A.D.V., Cardoso, P.H.L.: A comparison of Al(OH) 3 and Mg(OH) 2 as inorganic porogenic agents for alumina. Interceram: Int. Cer. Rev. 64 (2015) [4] 193-199.
[14]
go back to reference Alper, A.M., McNally, R.N., Ribbe, P.H., Doman, R.C.: The system MgO-MgAl 2O 4. J. Am. Cer. Soc. 45 (1962) [6] 263-268. Alper, A.M., McNally, R.N., Ribbe, P.H., Doman, R.C.: The system MgO-MgAl 2O 4. J. Am. Cer. Soc. 45 (1962) [6] 263-268.
[15]
go back to reference Bayley, J.T., Russel Jr., R.: Sintered spinel ceramics. Am. Cer. Soc. Bull. 47 (1968) [11] 1025-1029. Bayley, J.T., Russel Jr., R.: Sintered spinel ceramics. Am. Cer. Soc. Bull. 47 (1968) [11] 1025-1029.
[16]
go back to reference Ganesh, I. A review on magnesium aluminate (MgAl 2O 4) spinel: synthesis, processing and applications. Int. Mat. Rev. 58 (2013) [2] 63-112. Ganesh, I. A review on magnesium aluminate (MgAl 2O 4) spinel: synthesis, processing and applications. Int. Mat. Rev. 58 (2013) [2] 63-112.
[17]
go back to reference Bayley, T.J., Russel Jr., R.: Preparation and properties of dense spinel ceramics in the MgAl 2O 4-Al 2O 3 system. Trans. Brit. Cer. Soc. 68 (1969) [4] 159-164. Bayley, T.J., Russel Jr., R.: Preparation and properties of dense spinel ceramics in the MgAl 2O 4-Al 2O 3 system. Trans. Brit. Cer. Soc. 68 (1969) [4] 159-164.
[18]
go back to reference Bayley, J.T., Russel Jr., R.: Magnesia-rich MgAl 2O 4 spinel ceramics. Am. Cer. Soc. Bull. 50 (1971) [5] 493-496. Bayley, J.T., Russel Jr., R.: Magnesia-rich MgAl 2O 4 spinel ceramics. Am. Cer. Soc. Bull. 50 (1971) [5] 493-496.
[19]
go back to reference Braulio, M.A.L., Castro, J.F.R., Pagliosa, C., Bittencourt, L.R.M., Pandolfelli, V.C.: From macro to nanomagnesia: designing the in situ spinel expansion. J. Am. Cer. Soc. 91 (2009) [9] 3090-3093. Braulio, M.A.L., Castro, J.F.R., Pagliosa, C., Bittencourt, L.R.M., Pandolfelli, V.C.: From macro to nanomagnesia: designing the in situ spinel expansion. J. Am. Cer. Soc. 91 (2009) [9] 3090-3093.
[20]
go back to reference Fuhrer, M., Hey, A., Lee, W.E.: Microstructural evolution in self-forming spinel/calcium aluminate castable refractories. J. Eur. Ceram. Soc. 18 (1998) [7] 813-820. Fuhrer, M., Hey, A., Lee, W.E.: Microstructural evolution in self-forming spinel/calcium aluminate castable refractories. J. Eur. Ceram. Soc. 18 (1998) [7] 813-820.
[21]
go back to reference Braulio, M.A.L., Rigaud, M., Buhr, A., Parr, C., Pandolfelli, V.C.: Spinel-containing alumina-based refractory castables. Ceram. Int. 37 (2011) [6] 1705-1724. Braulio, M.A.L., Rigaud, M., Buhr, A., Parr, C., Pandolfelli, V.C.: Spinel-containing alumina-based refractory castables. Ceram. Int. 37 (2011) [6] 1705-1724.
[22]
go back to reference Sarpoolaky, H., Zhang, S., Lee, W.E.: Corrosion of high-alumina and near stoichiometric spinels in iron-containing silicate slags. J. Eur. Ceram. Soc. 23 (2003) [2] 293-300. Sarpoolaky, H., Zhang, S., Lee, W.E.: Corrosion of high-alumina and near stoichiometric spinels in iron-containing silicate slags. J. Eur. Ceram. Soc. 23 (2003) [2] 293-300.
[23]
go back to reference Sako, E.Y., Braulio, M.A.L., Milanez, D.H., Brant, P.O., Pandolfelli, V.C.: Microsilica role in the CA 6 formation in cement-bonded spinel refractory castables. J. Mat. Proc. Tech. 209 (2009) [15-16]. 5552-5557. Sako, E.Y., Braulio, M.A.L., Milanez, D.H., Brant, P.O., Pandolfelli, V.C.: Microsilica role in the CA 6 formation in cement-bonded spinel refractory castables. J. Mat. Proc. Tech. 209 (2009) [15-16]. 5552-5557.
[24]
go back to reference Chatterji, S.: Mechanism of expansion of concrete due to the presence of dear-burnt CaO and MgO. Cem. Conc. Res. 25 (1995) 51-56. Chatterji, S.: Mechanism of expansion of concrete due to the presence of dear-burnt CaO and MgO. Cem. Conc. Res. 25 (1995) 51-56.
[25]
go back to reference Henrist, C., Mathieu, J.P., Vogels, C., Rulmont, A., Cloots, R.: Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Cryst. Grow. 249 (2003) 321-330. Henrist, C., Mathieu, J.P., Vogels, C., Rulmont, A., Cloots, R.: Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Cryst. Grow. 249 (2003) 321-330.
[26]
go back to reference Costa, L.M.M., Sakihama, J., Salomão, R.: Characterization of porous calcium hexaluminate produced from calcined alumina and microspheres of Vaterire (m-CaCO 3). J. Eur. Cer. Soc. 38 (2018) 5208-5218. Costa, L.M.M., Sakihama, J., Salomão, R.: Characterization of porous calcium hexaluminate produced from calcined alumina and microspheres of Vaterire (m-CaCO 3). J. Eur. Cer. Soc. 38 (2018) 5208-5218.
[27]
go back to reference Salomão, R., Arruda, C.C., Antunes, M.L.P.: Synthesis, dehydroxylation and sintering of porous Mg(OH) 2-MgO clusters: Evolution of microstructure and physical properties. Interceram: Int. Cer. Rev. 69 (2020) [1] 52-62. Salomão, R., Arruda, C.C., Antunes, M.L.P.: Synthesis, dehydroxylation and sintering of porous Mg(OH) 2-MgO clusters: Evolution of microstructure and physical properties. Interceram: Int. Cer. Rev. 69 (2020) [1] 52-62.
[28]
go back to reference Turner, R.C., Hoffman, I., Chen, D.: Thermogravimetry of the dehydration of Mg(OH) 2. Can. J. Chem. 41 (1963) [2] 243-251. Turner, R.C., Hoffman, I., Chen, D.: Thermogravimetry of the dehydration of Mg(OH) 2. Can. J. Chem. 41 (1963) [2] 243-251.
[29]
go back to reference Gordon, R.S., Kingery, W.D.: Thermal decomposition of brucite: I, electron and optical microscope studies. J. Am. Cer. Soc. 49 (1966) [12] 654-660. Gordon, R.S., Kingery, W.D.: Thermal decomposition of brucite: I, electron and optical microscope studies. J. Am. Cer. Soc. 49 (1966) [12] 654-660.
[30]
go back to reference Green, J.: Calcination of precipitated Mg(OH) 2 to active MgO in production of refractory and chemical grade MgO. J. Mat. Sci. 18 (1983) 637-651. Green, J.: Calcination of precipitated Mg(OH) 2 to active MgO in production of refractory and chemical grade MgO. J. Mat. Sci. 18 (1983) 637-651.
[31]
go back to reference Kim, M.G., Dahmen, U., Searcy, A.W.: Structural transformation in decomposition of Mg(OH) 2 and MgCO 3. J. Am. Cer. Soc. 70 (1987) [3] 146-154. Kim, M.G., Dahmen, U., Searcy, A.W.: Structural transformation in decomposition of Mg(OH) 2 and MgCO 3. J. Am. Cer. Soc. 70 (1987) [3] 146-154.
[32]
go back to reference Yoshida, T., Tahaka, T., Yoshida, H., Funabiki, T., Yoshida, S., Murata, T.: Study of dehydration of magnesium hydroxide. J. Phys. Chem. 99 (1995) [27] 10890-10896. Yoshida, T., Tahaka, T., Yoshida, H., Funabiki, T., Yoshida, S., Murata, T.: Study of dehydration of magnesium hydroxide. J. Phys. Chem. 99 (1995) [27] 10890-10896.
[33]
go back to reference Layden, G.K., Brindley, G.W.: Kinetics of vapor-phase hydration of magnesium oxide. J. Am. Cer. Soc. 46 (1963) [11] 518-522. Layden, G.K., Brindley, G.W.: Kinetics of vapor-phase hydration of magnesium oxide. J. Am. Cer. Soc. 46 (1963) [11] 518-522.
[34]
go back to reference Kitamura, A., Onizuka, K., Tanaka, K.: Hydration characteristics of magnesia. Taikabutsu Overs. 16 (1995) [3] 3-11. Kitamura, A., Onizuka, K., Tanaka, K.: Hydration characteristics of magnesia. Taikabutsu Overs. 16 (1995) [3] 3-11.
[35]
go back to reference Salomão, R., Pandolfelli, V.C.: Magnesia sinter hydration-dehydration behavior in refractory castables. Ceram. Int. 34 (2008) [8] 1829-1834. Salomão, R., Pandolfelli, V.C.: Magnesia sinter hydration-dehydration behavior in refractory castables. Ceram. Int. 34 (2008) [8] 1829-1834.
[36]
go back to reference Lowrie, R.C., Cutler, I.B.: The effect of porosity on the rate of grain growth of magnesia. In: Kuczynski, G.C., Hooton, N.A., Gibbon, C.F., eds. Sintering and Related Phenomena. New York. Gordon and Breach, Science Publishers (1965) 527-539. Lowrie, R.C., Cutler, I.B.: The effect of porosity on the rate of grain growth of magnesia. In: Kuczynski, G.C., Hooton, N.A., Gibbon, C.F., eds. Sintering and Related Phenomena. New York. Gordon and Breach, Science Publishers (1965) 527-539.
[37]
go back to reference Sousa, L.L., Souza, A.D.V., Fernandes, L., V.L. Arantes, Salomão, R.: Development of densification-resistant castable porous structures from in situ mullite. Ceram. Int. 41 (2015) [8] 9443-9454. Sousa, L.L., Souza, A.D.V., Fernandes, L., V.L. Arantes, Salomão, R.: Development of densification-resistant castable porous structures from in situ mullite. Ceram. Int. 41 (2015) [8] 9443-9454.
Metadata
Title
Porogenesis in the Alumina-Brucite-Magnesia-Spinel System
Authors
Rafael Salomão
Isadora Medeiros de Morais Dias
Leandro Fernandes
Publication date
01-07-2020
Publisher
Springer Fachmedien Wiesbaden
Published in
Interceram - International Ceramic Review / Issue 3/2020
Print ISSN: 0020-5214
Electronic ISSN: 2523-8957
DOI
https://doi.org/10.1007/s42411-020-0096-6

Other articles of this Issue 3/2020

Interceram - International Ceramic Review 3/2020 Go to the issue

Premium Partners