Skip to main content
Top

2017 | OriginalPaper | Chapter

6. Porous Carbons for Hydrogen Storage

Authors : Mathieu Bosch, Hong-Cai Zhou

Published in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Porous carbon-based materials are promising candidates as adsorbents to increase the gravimetric and volumetric uptake of hydrogen at cryogenic temperatures and moderate pressures. In most cases, this uptake increases linearly with surface area, but strategies to increase uptake beyond that predicted by this “chahine rule,” to increase surface area, and to otherwise improve these materials are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in different carbon nanostructures. Carbon 43(10), 2209–2214 (2005) B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in different carbon nanostructures. Carbon 43(10), 2209–2214 (2005)
2.
go back to reference O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012) O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012)
3.
go back to reference S.J. Yang, J.H. Im, H. Nishihara, H. Jung, K. Lee, T. Kyotani, C.R. Park, General relationship between hydrogen adsorption capacities at 77 and 298 K and pore characteristics of the porous adsorbents. J. Phys. Chem. C 116(19), 10529–10540 (2012) S.J. Yang, J.H. Im, H. Nishihara, H. Jung, K. Lee, T. Kyotani, C.R. Park, General relationship between hydrogen adsorption capacities at 77 and 298 K and pore characteristics of the porous adsorbents. J. Phys. Chem. C 116(19), 10529–10540 (2012)
4.
go back to reference K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Origin of superhigh surface-area and microcrystalline graphitic structures of activated carbons. Carbon 30(7), 1075–1088 (1992) K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Origin of superhigh surface-area and microcrystalline graphitic structures of activated carbons. Carbon 30(7), 1075–1088 (1992)
5.
go back to reference (a) D.A. Gómez-Gualdrón, P.Z. Moghadam, J.T. Hupp, O.K. Farha, R.Q. Snurr, Application of consistency criteria to calculate BET areas of micro- and mesoporous metal–organic frameworks. J. Am. Chem. Soc. 100, 100–101 (2015); (b) T.C. Wang, W. Bury, D.A. Gómez-Gualdrón, N.A. Vermeulen, J.E. Mondloch, P. Deria, K. Zhang, P.Z. Moghadam, A.A. Sarjeant, R.Q. Snurr, J.F. Stoddart, J.T. Hupp, O.K. Farha, Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J. Am. Chem. Soc. 137(10), 3585–3591 (2015) (a) D.A. Gómez-Gualdrón, P.Z. Moghadam, J.T. Hupp, O.K. Farha, R.Q. Snurr, Application of consistency criteria to calculate BET areas of micro- and mesoporous metal–organic frameworks. J. Am. Chem. Soc. 100, 100–101 (2015); (b) T.C. Wang, W. Bury, D.A. Gómez-Gualdrón, N.A. Vermeulen, J.E. Mondloch, P. Deria, K. Zhang, P.Z. Moghadam, A.A. Sarjeant, R.Q. Snurr, J.F. Stoddart, J.T. Hupp, O.K. Farha, Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J. Am. Chem. Soc. 137(10), 3585–3591 (2015)
6.
go back to reference D.E. Demirocak, S.S. Srinivasan, M.K. Ram, D.Y. Goswami, E.K. Stefanakos, Volumetric hydrogen sorption measurements – uncertainty error analysis and the importance of thermal equilibration time. Int. J. Hydrogen Energy 38(3), 1469–1477 (2013) D.E. Demirocak, S.S. Srinivasan, M.K. Ram, D.Y. Goswami, E.K. Stefanakos, Volumetric hydrogen sorption measurements – uncertainty error analysis and the importance of thermal equilibration time. Int. J. Hydrogen Energy 38(3), 1469–1477 (2013)
7.
go back to reference T. Duren, F. Millange, G. Ferey, K.S. Walton, R.Q. Snurr, Calculating geometric surface areas as a characterization tool for metal-organic frameworks. J. Phys. Chem. C 111(42), 15350–15356 (2007) T. Duren, F. Millange, G. Ferey, K.S. Walton, R.Q. Snurr, Calculating geometric surface areas as a characterization tool for metal-organic frameworks. J. Phys. Chem. C 111(42), 15350–15356 (2007)
8.
go back to reference M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014) M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014)
9.
go back to reference B. Feng, S.K. Bhatia, Variation of the pore structure of coal chars during gasification. Carbon 41(3), 507–523 (2003) B. Feng, S.K. Bhatia, Variation of the pore structure of coal chars during gasification. Carbon 41(3), 507–523 (2003)
10.
go back to reference S. Osswald, C. Portet, Y. Gogotsi, G. Laudisio, J.P. Singer, J.E. Fischer, V.V. Sokolov, J.A. Kukushkina, A.E. Kravchik, Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide. J. Solid State Chem. 182(7), 1733–1741 (2009) S. Osswald, C. Portet, Y. Gogotsi, G. Laudisio, J.P. Singer, J.E. Fischer, V.V. Sokolov, J.A. Kukushkina, A.E. Kravchik, Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide. J. Solid State Chem. 182(7), 1733–1741 (2009)
11.
go back to reference (a) I. Cabria, M.J. Lopez, J.A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45(13), 2649–2658 (2007); (b) M. Sevilla, P. Valle-Vigon, A.B. Fuertes, N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21(14), 2781–2787 (2011) (a) I. Cabria, M.J. Lopez, J.A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45(13), 2649–2658 (2007); (b) M. Sevilla, P. Valle-Vigon, A.B. Fuertes, N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21(14), 2781–2787 (2011)
12.
go back to reference H.L. Wang, Q.M. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131(20), 7016–7022 (2009) H.L. Wang, Q.M. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131(20), 7016–7022 (2009)
13.
go back to reference S.J. Yang, H. Jung, T. Kim, C.R. Park, Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progr. Nat. Sci. Mater. Int. 22(6), 631–638 (2012) S.J. Yang, H. Jung, T. Kim, C.R. Park, Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progr. Nat. Sci. Mater. Int. 22(6), 631–638 (2012)
14.
go back to reference (a) Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996); (b) V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111(20), 7527–7531 (2007) (a) Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996); (b) V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111(20), 7527–7531 (2007)
15.
go back to reference D. Qu, Investigation of hydrogen physisorption active sites on the surface of porous carbonaceous materials. Chem. Eur. J. 14(3), 1040–1046 (2008) D. Qu, Investigation of hydrogen physisorption active sites on the surface of porous carbonaceous materials. Chem. Eur. J. 14(3), 1040–1046 (2008)
16.
go back to reference M. Molina-Sabio, F. Rodriguez-Reinoso, Role of chemical activation in the development of carbon porosity. Colloid Surf. A 241(1–3), 15–25 (2004) M. Molina-Sabio, F. Rodriguez-Reinoso, Role of chemical activation in the development of carbon porosity. Colloid Surf. A 241(1–3), 15–25 (2004)
17.
go back to reference R. Yang, G. Liu, M. Li, J. Zhang, X. Hao, Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous Mesoporous Mater. 158, 108–116 (2012) R. Yang, G. Liu, M. Li, J. Zhang, X. Hao, Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous Mesoporous Mater. 158, 108–116 (2012)
18.
go back to reference J. Wang, I. Senkovska, S. Kaskel, Q. Liu, Chemically activated fungi-based porous carbons for hydrogen storage. Carbon 75, 372–380 (2014) J. Wang, I. Senkovska, S. Kaskel, Q. Liu, Chemically activated fungi-based porous carbons for hydrogen storage. Carbon 75, 372–380 (2014)
19.
go back to reference I. Wróbel-Iwaniec, N. Díez, G. Gryglewicz, Chitosan-based highly activated carbons for hydrogen storage. Int. J. Hydrogen Energy 40(17), 5788–5796 (2015) I. Wróbel-Iwaniec, N. Díez, G. Gryglewicz, Chitosan-based highly activated carbons for hydrogen storage. Int. J. Hydrogen Energy 40(17), 5788–5796 (2015)
20.
go back to reference J. Cai, J. Qi, C. Yang, X. Zhao, Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl. Mater. Interfaces 6(5), 3703–3711 (2014) J. Cai, J. Qi, C. Yang, X. Zhao, Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl. Mater. Interfaces 6(5), 3703–3711 (2014)
21.
go back to reference G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, I.A. Baburin, G. Seifert, R. Mysyk, A.V. Talyzin, Porous graphene oxide/diboronic acid materials structure and hydrogen sorption. J. Phys. Chem. C 119(49), 27179–27191 (2015) G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, I.A. Baburin, G. Seifert, R. Mysyk, A.V. Talyzin, Porous graphene oxide/diboronic acid materials structure and hydrogen sorption. J. Phys. Chem. C 119(49), 27179–27191 (2015)
22.
go back to reference D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, H.D. Jang, J. Huang, Energetic graphene oxide: challenges and opportunities. Nano Today 7(2), 137–152 (2012) D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, H.D. Jang, J. Huang, Energetic graphene oxide: challenges and opportunities. Nano Today 7(2), 137–152 (2012)
23.
go back to reference S.H. Aboutalebi, S. Aminorroaya-Yamini, I. Nevirkovets, K. Konstantinov, H.K. Liu, Enhanced hydrogen storage in graphene oxide-MWCNTs composite at room temperature. Adv. Energy Mater. 2(12), 1439–1446 (2012) S.H. Aboutalebi, S. Aminorroaya-Yamini, I. Nevirkovets, K. Konstantinov, H.K. Liu, Enhanced hydrogen storage in graphene oxide-MWCNTs composite at room temperature. Adv. Energy Mater. 2(12), 1439–1446 (2012)
24.
go back to reference G. Srinivas, Y.W. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff, Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3), 630–635 (2010) G. Srinivas, Y.W. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff, Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3), 630–635 (2010)
25.
go back to reference S. Gadipelli, Z.X. Guo, Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015) S. Gadipelli, Z.X. Guo, Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015)
26.
go back to reference A. Klechikov, G. Mercier, T. Sharifi, I.A. Baburin, G. Seifert, A.V. Talyzin, Hydrogen storage in high surface area graphene scaffolds. Chem. Commun. 51(83), 15280–15283 (2015) A. Klechikov, G. Mercier, T. Sharifi, I.A. Baburin, G. Seifert, A.V. Talyzin, Hydrogen storage in high surface area graphene scaffolds. Chem. Commun. 51(83), 15280–15283 (2015)
27.
go back to reference S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24(3), 464–470 (2012) S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24(3), 464–470 (2012)
28.
go back to reference T. Segakweng, N. Musyoka, J. Ren, P. Crouse, H. Langmi, Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application. Res. Chem. Intermed. 1–11 (2015) T. Segakweng, N. Musyoka, J. Ren, P. Crouse, H. Langmi, Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application. Res. Chem. Intermed. 1–11 (2015)
29.
go back to reference T.K. Kim, K.J. Lee, J.Y. Cheon, J.H. Lee, S.H. Joo, H.R. Moon, Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal–organic frameworks. J. Am. Chem. Soc. 135(24), 8940–8946 (2013) T.K. Kim, K.J. Lee, J.Y. Cheon, J.H. Lee, S.H. Joo, H.R. Moon, Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal–organic frameworks. J. Am. Chem. Soc. 135(24), 8940–8946 (2013)
30.
go back to reference W.Q. Wang, D.Q. Yuan, Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci. Rep-Uk 4 (2014) W.Q. Wang, D.Q. Yuan, Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Sci. Rep-Uk 4 (2014)
31.
go back to reference M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134(6), 2864–2867 (2012) M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134(6), 2864–2867 (2012)
32.
go back to reference W. Xia, B. Qiu, D. Xia, R. Zou, Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep-Uk 2013, 3 (1935) W. Xia, B. Qiu, D. Xia, R. Zou, Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep-Uk 2013, 3 (1935)
33.
go back to reference K. Kongpatpanich, S. Horike, Y. Fujiwara, N. Ogiwara, H. Nishihara, S. Kitagawa, Formation of foam-like microstructural carbon material by carbonization of porous coordination polymers through a ligand-assisted foaming process. Chem-Eur. J. 21(38), 13278–13283 (2015) K. Kongpatpanich, S. Horike, Y. Fujiwara, N. Ogiwara, H. Nishihara, S. Kitagawa, Formation of foam-like microstructural carbon material by carbonization of porous coordination polymers through a ligand-assisted foaming process. Chem-Eur. J. 21(38), 13278–13283 (2015)
34.
go back to reference S.J. Yang, T. Kim, K. Lee, Y.S. Kim, J. Yoon, C.R. Park, Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity. Carbon 71, 294–302 (2014) S.J. Yang, T. Kim, K. Lee, Y.S. Kim, J. Yoon, C.R. Park, Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity. Carbon 71, 294–302 (2014)
35.
go back to reference K. Jayaramulu, K.K.R. Datta, K. Shiva, A.J. Bhattacharyya, M. Eswaramoorthy, T.K. Maji, Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Microporous Mesoporous Mater. 206, 127–135 (2015) K. Jayaramulu, K.K.R. Datta, K. Shiva, A.J. Bhattacharyya, M. Eswaramoorthy, T.K. Maji, Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Microporous Mesoporous Mater. 206, 127–135 (2015)
36.
go back to reference A. Aijaz, J.-K. Sun, P. Pachfule, T. Uchida, Q. Xu, From a metal-organic framework to hierarchical high surface-area hollow octahedral carbon cages. Chem. Commun. 51(73), 13945–13948 (2015) A. Aijaz, J.-K. Sun, P. Pachfule, T. Uchida, Q. Xu, From a metal-organic framework to hierarchical high surface-area hollow octahedral carbon cages. Chem. Commun. 51(73), 13945–13948 (2015)
37.
go back to reference G.J. Kubas, Metal-dihydrogen and sigma-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin bonding. J. Organomet. Chem. 635(1–2), 37–68 (2001) G.J. Kubas, Metal-dihydrogen and sigma-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin bonding. J. Organomet. Chem. 635(1–2), 37–68 (2001)
38.
go back to reference Y.R. Liu, D. Li, B.P. Lin, Y. Sun, X.Q. Zhang, H. Yang, Hydrothermal synthesis of Ni-doped hierarchically porous carbon monoliths for hydrogen storage. J. Porous. Mater. 22(6), 1417–1422 (2015) Y.R. Liu, D. Li, B.P. Lin, Y. Sun, X.Q. Zhang, H. Yang, Hydrothermal synthesis of Ni-doped hierarchically porous carbon monoliths for hydrogen storage. J. Porous. Mater. 22(6), 1417–1422 (2015)
39.
go back to reference V.B. Parambhath, R. Nagar, K. Sethupathi, S. Ramaprabhu, Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J. Phys. Chem. C 115(31), 15679–15685 (2011) V.B. Parambhath, R. Nagar, K. Sethupathi, S. Ramaprabhu, Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J. Phys. Chem. C 115(31), 15679–15685 (2011)
40.
go back to reference H.B. Aiyappa, P. Pachfule, R. Banerjee, S. Kurungot, Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon. Cryst. Growth Des. 13(10), 4195–4199 (2013) H.B. Aiyappa, P. Pachfule, R. Banerjee, S. Kurungot, Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon. Cryst. Growth Des. 13(10), 4195–4199 (2013)
41.
go back to reference B.P. Vinayan, K. Sethupathi, S. Ramaprabhu, Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications. Int. J. Hydrogen Energy 38(5), 2240–2250 (2013) B.P. Vinayan, K. Sethupathi, S. Ramaprabhu, Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications. Int. J. Hydrogen Energy 38(5), 2240–2250 (2013)
42.
go back to reference Y. Wang, J. Liu, K. Wang, T. Chen, X. Tan, C.M. Li, Hydrogen storage in Ni–B nanoalloy-doped 2D graphene. Int. J. Hydrogen Energ 36(20), 12950–12954 (2011) Y. Wang, J. Liu, K. Wang, T. Chen, X. Tan, C.M. Li, Hydrogen storage in Ni–B nanoalloy-doped 2D graphene. Int. J. Hydrogen Energ 36(20), 12950–12954 (2011)
43.
go back to reference Y. Wang, C.X. Guo, X. Wang, C. Guan, H. Yang, K. Wang, C.M. Li, Hydrogen storage in a Ni-B nanoalloy-doped three-dimensional graphene material. Energy Environ. Sci. 4(1), 195–200 (2011) Y. Wang, C.X. Guo, X. Wang, C. Guan, H. Yang, K. Wang, C.M. Li, Hydrogen storage in a Ni-B nanoalloy-doped three-dimensional graphene material. Energy Environ. Sci. 4(1), 195–200 (2011)
44.
go back to reference G.M. Psofogiannakis, T.A. Steriotis, A.B. Bourlinos, E.P. Kouvelos, G.C. Charalambopoulou, A.K. Stubos, G.E. Froudakis, Enhanced hydrogen storage by spillover on metal-doped carbon foam: an experimental and computational study. Nanoscale 3(3), 933–936 (2011) G.M. Psofogiannakis, T.A. Steriotis, A.B. Bourlinos, E.P. Kouvelos, G.C. Charalambopoulou, A.K. Stubos, G.E. Froudakis, Enhanced hydrogen storage by spillover on metal-doped carbon foam: an experimental and computational study. Nanoscale 3(3), 933–936 (2011)
45.
go back to reference H. Nishihara, P.-X. Hou, L.-X. Li, M. Ito, M. Uchiyama, T. Kaburagi, A. Ikura, J. Katamura, T. Kawarada, K. Mizuuchi, T. Kyotani, High-pressure hydrogen storage in zeolite-templated carbon. J. Phys. Chem. C 113(8), 3189–3196 (2009) H. Nishihara, P.-X. Hou, L.-X. Li, M. Ito, M. Uchiyama, T. Kaburagi, A. Ikura, J. Katamura, T. Kawarada, K. Mizuuchi, T. Kyotani, High-pressure hydrogen storage in zeolite-templated carbon. J. Phys. Chem. C 113(8), 3189–3196 (2009)
46.
go back to reference Z.X. Yang, Y.D. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129(6), 1673–1679 (2007) Z.X. Yang, Y.D. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129(6), 1673–1679 (2007)
47.
go back to reference N. Musyoka, J. Ren, P. Annamalai, H. Langmi, B. North, M. Mathe, D. Bessarabov, Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Res. Chem. Intermed. 1–9 (2015) N. Musyoka, J. Ren, P. Annamalai, H. Langmi, B. North, M. Mathe, D. Bessarabov, Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Res. Chem. Intermed. 1–9 (2015)
48.
go back to reference E. Masika, R.A. Bourne, T.W. Chamberlain, R. Mokaya, Supercritical CO2 mediated incorporation of pd onto templated carbons: a route to optimizing the pd particle size and hydrogen uptake density. ACS Appl. Mater. Interfaces 5(12), 5639–5647 (2013) E. Masika, R.A. Bourne, T.W. Chamberlain, R. Mokaya, Supercritical CO2 mediated incorporation of pd onto templated carbons: a route to optimizing the pd particle size and hydrogen uptake density. ACS Appl. Mater. Interfaces 5(12), 5639–5647 (2013)
49.
go back to reference H. Nishihara, S. Ittisanronnachai, H. Itoi, L.-X. Li, K. Suzuki, U. Nagashima, H. Ogawa, T. Kyotani, M. Ito, Experimental and theoretical studies of hydrogen/deuterium spillover on pt-loaded zeolite-templated carbon. J. Phys. Chem. C 118(18), 9551–9559 (2014) H. Nishihara, S. Ittisanronnachai, H. Itoi, L.-X. Li, K. Suzuki, U. Nagashima, H. Ogawa, T. Kyotani, M. Ito, Experimental and theoretical studies of hydrogen/deuterium spillover on pt-loaded zeolite-templated carbon. J. Phys. Chem. C 118(18), 9551–9559 (2014)
50.
go back to reference (a) Q. Zhou, C. Wang, Z. Fu, L. Yuan, X. Yang, Y. Tang, H. Zhang, Hydrogen adsorption on palladium anchored defected graphene with B-doping: a theoretical study. Int. J. Hydrogen Energy 40(6), 2473–2483 (2015); (b) L. Wang, J.A.J. Lachawiec, R.T. Yang, Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover. RSC Adv. 3(46), 23935–23952 (2013) (a) Q. Zhou, C. Wang, Z. Fu, L. Yuan, X. Yang, Y. Tang, H. Zhang, Hydrogen adsorption on palladium anchored defected graphene with B-doping: a theoretical study. Int. J. Hydrogen Energy 40(6), 2473–2483 (2015); (b) L. Wang, J.A.J. Lachawiec, R.T. Yang, Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover. RSC Adv. 3(46), 23935–23952 (2013)
51.
go back to reference J. Shi, W. Li, D. Li, Synthesis, nickel decoration, and hydrogen adsorption of silica-templated mesoporous carbon material with high surface area. J. Phys. Chem. C 119(41), 23430–23435 (2015) J. Shi, W. Li, D. Li, Synthesis, nickel decoration, and hydrogen adsorption of silica-templated mesoporous carbon material with high surface area. J. Phys. Chem. C 119(41), 23430–23435 (2015)
52.
go back to reference (a) G. Yushin, R. Dash, J. Jagiello, J.E. Fischer, Y. Gogotsi, Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv. Funct. Mater. 16(17), 2288–2293 (2006); (b) Y. Gogotsi, R.K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J.E. Fischer, Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J. Am. Chem. Soc. 127(46), 16006–16007 (2005) (a) G. Yushin, R. Dash, J. Jagiello, J.E. Fischer, Y. Gogotsi, Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv. Funct. Mater. 16(17), 2288–2293 (2006); (b) Y. Gogotsi, R.K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J.E. Fischer, Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J. Am. Chem. Soc. 127(46), 16006–16007 (2005)
53.
go back to reference H.S. Kim, J.P. Singer, Y. Gogotsi, J.E. Fischer, Molybdenum carbide-derived carbon for hydrogen storage. Microporous Mesoporous Mater. 120(3), 267–271 (2009) H.S. Kim, J.P. Singer, Y. Gogotsi, J.E. Fischer, Molybdenum carbide-derived carbon for hydrogen storage. Microporous Mesoporous Mater. 120(3), 267–271 (2009)
54.
go back to reference S.-H. Yeon, I. Knoke, Y. Gogotsi, J.E. Fischer, Enhanced volumetric hydrogen and methane storage capacity of monolithic carbide-derived carbon. Microporous Mesoporous Mater. 131(1–3), 423–428 (2010) S.-H. Yeon, I. Knoke, Y. Gogotsi, J.E. Fischer, Enhanced volumetric hydrogen and methane storage capacity of monolithic carbide-derived carbon. Microporous Mesoporous Mater. 131(1–3), 423–428 (2010)
55.
go back to reference M. Sevilla, R. Foulston, R. Mokaya, Superactivated carbide-derived carbons with high hydrogen storage capacity. Energ Environ Sci 3(2), 223–227 (2010) M. Sevilla, R. Foulston, R. Mokaya, Superactivated carbide-derived carbons with high hydrogen storage capacity. Energ Environ Sci 3(2), 223–227 (2010)
56.
go back to reference D. Yuan, W. Lu, D. Zhao, H.-C. Zhou, Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23(32), 3723–3725 (2011) D. Yuan, W. Lu, D. Zhao, H.-C. Zhou, Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23(32), 3723–3725 (2011)
57.
go back to reference T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009) T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009)
58.
go back to reference L.B. Sun, A.G. Li, X.D. Liu, X.Q. Liu, D.W. Feng, W.G. Lu, D.Q. Yuan, H.C. Zhou, Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture. J. Mater. Chem. A 3(7), 3252–3256 (2015) L.B. Sun, A.G. Li, X.D. Liu, X.Q. Liu, D.W. Feng, W.G. Lu, D.Q. Yuan, H.C. Zhou, Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture. J. Mater. Chem. A 3(7), 3252–3256 (2015)
59.
go back to reference S. Wu, Y. Liu, G. Yu, J. Guan, C. Pan, Y. Du, X. Xiong, Z. Wang, Facile preparation of dibenzoheterocycle-functional nanoporous polymeric networks with high gas uptake capacities. Macromolecules 47(9), 2875–2882 (2014) S. Wu, Y. Liu, G. Yu, J. Guan, C. Pan, Y. Du, X. Xiong, Z. Wang, Facile preparation of dibenzoheterocycle-functional nanoporous polymeric networks with high gas uptake capacities. Macromolecules 47(9), 2875–2882 (2014)
60.
go back to reference Z. Xiang, R. Mercado, J.M. Huck, H. Wang, Z. Guo, W. Wang, D. Cao, M. Haranczyk, B. Smit, Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137(41), 13301–13307 (2015) Z. Xiang, R. Mercado, J.M. Huck, H. Wang, Z. Guo, W. Wang, D. Cao, M. Haranczyk, B. Smit, Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137(41), 13301–13307 (2015)
61.
go back to reference W.G. Lu, Z.W. Wei, D.Q. Yuan, J. Tian, S. Fordham, H.C. Zhou, Rational design and synthesis of porous polymer networks: toward high surface area. Chem. Mater. 26(15), 4589–4597 (2014) W.G. Lu, Z.W. Wei, D.Q. Yuan, J. Tian, S. Fordham, H.C. Zhou, Rational design and synthesis of porous polymer networks: toward high surface area. Chem. Mater. 26(15), 4589–4597 (2014)
62.
go back to reference Y. Li, T. Ben, B. Zhang, Y. Fu, S. Qiu, Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci. Rep-Uk 3, 2420 (2013) Y. Li, T. Ben, B. Zhang, Y. Fu, S. Qiu, Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci. Rep-Uk 3, 2420 (2013)
Metadata
Title
Porous Carbons for Hydrogen Storage
Authors
Mathieu Bosch
Hong-Cai Zhou
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53514-1_6

Premium Partners