Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

Porous Materials for Solar Energy Harvesting, Transformation, and Storage

Authors : Christos Agrafiotis, Thomas Fend, Martin Roeb

Published in: Solar Thermal Energy

Publisher: Springer US

Excerpt

Concentrated solar power systems:
special mirror assemblies (parabolic troughs, heliostats, or parabolic dishes) that track the sun and concentrate its radiation, converting solar energy to medium- to high-temperature heat and through that to electricity.
Porous materials
materials containing voids (pores), usually comprised of a solid skeletal portion and of a void structure accessible to flow of a fluid (liquid or gas) through it.
Solar chemistry
implementation of chemical reactions by harnessing solar energy via absorbing sunlight.
Structured solar reactors
chemical reactors that utilize solar energy for the implementation of chemical reactions and where the solid catalytic or reactant particles are “arranged” free of randomness in space at the reactor level, in contrast to reactors wherein such particles are distributed randomly; examples of the first category include honeycomb, foam and membrane reactors, and of the second packed and fluidized beds.
Tailored porous structure
A porous functional material with a “designed” pore geometry adapted to the application
Thermochemical cycles
a series of consecutive chemical reactions (≥2) out of which at least one requires supply of heat, and their “net” sum is the dissociation of a chemical compound to products, with the maximum-temperature (endothermic) step taking place at a temperature level lower than that required for the single-step thermal-only dissociation of the reactant to the same products and any other chemical intermediates are recycled.
Thermochemical energy storage
the exploitation of the heat effects of reversible chemical reactions for the “storage” of heat: when heat is available is used to excite an endothermic chemical reaction and in this way can be “stored” in the creation of new chemical bonds; if this reaction is completely reversible, the thermal energy can be recovered completely by the reverse reaction taking place when the originally used heat is not available (e.g., concerning solar energy on- and off-sun, respectively).
Volumetric receivers
directly irradiated solar receivers in which solar irradiation and heat extraction take place on the same surface simultaneously: the concentrated solar radiation penetrates and is absorbed within their entire volume, transporting its energy to a working fluid flowing within them; usually porous material structures like honeycombs, foams, wire/fiber meshes, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossary
Latin
AV [m2/m3]
Specific (heat transfer) surface area
CPF [J/kg]
Specific heat capacity
dH [m]
Characteristic length (e.g., pore diameter)
E [W/(m2nm)]
Direct normal spectral irradiance
I, I0 [W/m2]
Solar radiation flux density
k [1/m]
Extinction coefficient
K1 [m2]
Permeability, viscosity coefficient
K2 [m]
Inertial coefficient
l, L [m]
Length
\( \dot{m} \) [kg/(s m2)]
Mass flow density
nPPI [n/inch]
Cell density of ceramic foams (pores per inch)
n [-]
Number of fibers
Nu [-]
Nusselt number
OFIBERS [m2]
Surface of the fibers
p [Pa]
Pressure
P0 [-]
Porosity
PUSE [W]
Useful power
POA [W]
Power on aperture
\( \dot{q} \) [W/m2]
Heat flux density
\( \dot{Q} \) [W]
Heat flux
R [J/(kg K)]
specific gas constant
r [-]
Heat transfer/characteristic diameter exponent
T [°C] or [K]
Temperature
U0 [m/s]
Fluid velocity outside the cellular body
V [m3]
Volume
x [m]
Coordinate
Greek
Α [W/(m2K)]
Convective heat transfer coefficient
Β [-]
Correction factor describing thermal losses
γ [-]
Angle of incidence
Ε [-]
Absorptivity, emissivity
Η [-]
Efficiency
Λ [m]
Wavelength
μ [Ns/m2]
Dynamic viscosity
ρ [kg/m3]
Density
ρ2π [-]
Spectral hemispherical reflectance
ρ2πS [-]
Solar weighted hemispherical reflectance
σ [W/(m2 K4]
Stefan-Boltzmann-constant
Indices
Hemispherical
2πs
Solar weighted hemispherical
o
Superficial (in case of, e.g., U0: superficial velocity)
use
Useful
dyn
Dynamical
f
Fluid
s
Solid
Literature
1.
go back to reference Fricker H (1985) Study on the possibilities for a solar thermal power plant in the Val Maroz. Bull SEV/VSE 76:10–16 Fricker H (1985) Study on the possibilities for a solar thermal power plant in the Val Maroz. Bull SEV/VSE 76:10–16
2.
go back to reference Winter CJ, Sizmann RL, Vant-Hull LL (eds) (1991) Solar power plants. Springer, Berlin Winter CJ, Sizmann RL, Vant-Hull LL (eds) (1991) Solar power plants. Springer, Berlin
3.
go back to reference Meinecke W, Bohn M, Becker M, Gupta B (eds) (1994) Solar energy concentrating systems. C.F. Miller Verlag, Heidelberg Meinecke W, Bohn M, Becker M, Gupta B (eds) (1994) Solar energy concentrating systems. C.F. Miller Verlag, Heidelberg
4.
go back to reference Chavez JM, Kolb GJ, Meinecke W (1993) In: Becker M, Klimas PC (eds) Second generation central receiver technologies – a status report. Verlag C.F. Müller, Karlsruhe Chavez JM, Kolb GJ, Meinecke W (1993) In: Becker M, Klimas PC (eds) Second generation central receiver technologies – a status report. Verlag C.F. Müller, Karlsruhe
5.
go back to reference Hoffschmidt B, Dibowski G, Beuter M, Fernandez V, Téllez F, Stobbe P (2003) Test results of a 3 MW solar open volumetric receiver. ISES Solar World Congress, Göteborg Hoffschmidt B, Dibowski G, Beuter M, Fernandez V, Téllez F, Stobbe P (2003) Test results of a 3 MW solar open volumetric receiver. ISES Solar World Congress, Göteborg
6.
go back to reference Koll G, Schwarzbözl P, Hennecke K, Hartz T, Schmitz M, Hoffschmidt B (2009) The solar tower Jülich – a research and demonstration plant for central receiver systems. In: The 15th Solar PACES conference, Berlin Koll G, Schwarzbözl P, Hennecke K, Hartz T, Schmitz M, Hoffschmidt B (2009) The solar tower Jülich – a research and demonstration plant for central receiver systems. In: The 15th Solar PACES conference, Berlin
7.
go back to reference Avila Marin AL (2011) Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: a review. Sol Energy 85:891–910 CrossRef Avila Marin AL (2011) Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: a review. Sol Energy 85:891–910 CrossRef
8.
go back to reference Capuano R, Fend T, Schwarzbözl P, Smirnova O, Stadler H, Hoffschmidt B, Pitz-Paal R (2016) Numerical models of advanced ceramic absorbers for volumetric receivers. Renew Sustain Energy Rev 58:656–665 CrossRef Capuano R, Fend T, Schwarzbözl P, Smirnova O, Stadler H, Hoffschmidt B, Pitz-Paal R (2016) Numerical models of advanced ceramic absorbers for volumetric receivers. Renew Sustain Energy Rev 58:656–665 CrossRef
9.
go back to reference Buck R, Bräuning T, Denk T, Pfänder M, Schwarzbözl P, Tellez F (2002) Solar-hybrid gas turbine-based Power Tower Systems (REFOS). J Sol Energy Eng 124:2–9 CrossRef Buck R, Bräuning T, Denk T, Pfänder M, Schwarzbözl P, Tellez F (2002) Solar-hybrid gas turbine-based Power Tower Systems (REFOS). J Sol Energy Eng 124:2–9 CrossRef
10.
go back to reference Romero M, Buck R, Pacheco JE (2002) An update on solar central receiver systems, projects and technologies. J Sol Energy Eng 124:98–108 CrossRef Romero M, Buck R, Pacheco JE (2002) An update on solar central receiver systems, projects and technologies. J Sol Energy Eng 124:98–108 CrossRef
11.
go back to reference Kribus A, Zaibel R, Carrey D, Segal A, Karni J (1997) A solar-driven combined cycle power plant. Sol Energy 62:121–129 CrossRef Kribus A, Zaibel R, Carrey D, Segal A, Karni J (1997) A solar-driven combined cycle power plant. Sol Energy 62:121–129 CrossRef
12.
go back to reference Hinkley J, Hayward J, McNaughton R, Edwards J, Lovegrove K (2016) Concentrating solar fuels roadmap: final report, CSIRO Hinkley J, Hayward J, McNaughton R, Edwards J, Lovegrove K (2016) Concentrating solar fuels roadmap: final report, CSIRO
13.
go back to reference Ortona A, Fend T, Yu HW, Raju K, Fitriani P, Yoon DH (2015) Tubular Si-infiltrated SiCf/SiC composites for solar receiver application – Part 1: fabrication by replica and electrophoretic deposition. Sol Energy Mater Sol Cells 132:123–130 CrossRef Ortona A, Fend T, Yu HW, Raju K, Fitriani P, Yoon DH (2015) Tubular Si-infiltrated SiCf/SiC composites for solar receiver application – Part 1: fabrication by replica and electrophoretic deposition. Sol Energy Mater Sol Cells 132:123–130 CrossRef
14.
go back to reference Ortona A, Yoon DH, Fend T, Feckler G, Smirnova O (2015) Tubular Si-infiltrated SiCf/SiC composites for solar receiver application – Part 2: thermal performance analysis and prediction. Sol Energy Mater Sol Cells 140:382–387 CrossRef Ortona A, Yoon DH, Fend T, Feckler G, Smirnova O (2015) Tubular Si-infiltrated SiCf/SiC composites for solar receiver application – Part 2: thermal performance analysis and prediction. Sol Energy Mater Sol Cells 140:382–387 CrossRef
15.
go back to reference Ortona A, Fend T, Yu HW, Raju K, Yoon DH (2014) Fabrication of cylindrical SiCf/Si/SiC-based composite by electrophoretic deposition and liquid silicon infiltration. J Eur Ceram Soc 34:1131–1138 CrossRef Ortona A, Fend T, Yu HW, Raju K, Yoon DH (2014) Fabrication of cylindrical SiCf/Si/SiC-based composite by electrophoretic deposition and liquid silicon infiltration. J Eur Ceram Soc 34:1131–1138 CrossRef
16.
go back to reference Kribus A, Zaibel R, Carrey D, Segal A, Karni J (1998) A solar driven combined cycle power plant. Sol Energy 62:191–198 CrossRef Kribus A, Zaibel R, Carrey D, Segal A, Karni J (1998) A solar driven combined cycle power plant. Sol Energy 62:191–198 CrossRef
17.
go back to reference Heck RM, Farrauto RJ (1995) Catalytic air pollution control: commercial technology. Van Nostrand Reinhold, New York Heck RM, Farrauto RJ (1995) Catalytic air pollution control: commercial technology. Van Nostrand Reinhold, New York
18.
go back to reference Cybulski A, Moulijn JA (2005) Structured catalysts and reactors. CRC Press, Boca Raton CrossRef Cybulski A, Moulijn JA (2005) Structured catalysts and reactors. CRC Press, Boca Raton CrossRef
19.
go back to reference Agrafiotis CC, Pagkoura C, Lorentzou S, Kostoglou M, Konstandopoulos AG (2007) Hydrogen production in solar reactors. Catal Today 127:265–277 CrossRef Agrafiotis CC, Pagkoura C, Lorentzou S, Kostoglou M, Konstandopoulos AG (2007) Hydrogen production in solar reactors. Catal Today 127:265–277 CrossRef
20.
go back to reference Agrafiotis C, von Storch H, Roeb M, Sattler C (2014) Solar thermal reforming of methane feedstocks for hydrogen and syngas production – a review. Renew Sustain Energy Rev 29:656–682 CrossRef Agrafiotis C, von Storch H, Roeb M, Sattler C (2014) Solar thermal reforming of methane feedstocks for hydrogen and syngas production – a review. Renew Sustain Energy Rev 29:656–682 CrossRef
21.
go back to reference Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sust Energ Rev 42:254–285 CrossRef Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sust Energ Rev 42:254–285 CrossRef
22.
go back to reference Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT et al (2005) Solar water splitting for hydrogen production with monolithic reactors. Sol Energy 79:409–421 CrossRef Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT et al (2005) Solar water splitting for hydrogen production with monolithic reactors. Sol Energy 79:409–421 CrossRef
23.
go back to reference Furler P, Scheffe J, Gorbar M, Moes L, Vogt U et al (2012) Solar thermochemical CO 2 splitting utilizing a reticulated porous ceria redox system. Energy Fuel 26:7051–7059 CrossRef Furler P, Scheffe J, Gorbar M, Moes L, Vogt U et al (2012) Solar thermochemical CO 2 splitting utilizing a reticulated porous ceria redox system. Energy Fuel 26:7051–7059 CrossRef
24.
go back to reference Furler P, Scheffe JR, Steinfeld A (2012) Syngas production by simultaneous splitting of H 2O and CO 2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ Sci 5:6098–6103 CrossRef Furler P, Scheffe JR, Steinfeld A (2012) Syngas production by simultaneous splitting of H 2O and CO 2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ Sci 5:6098–6103 CrossRef
25.
go back to reference Chueh WC, Falter C, Abbott M, Scipio D, Furler P et al (2010) High-flux solar-driven thermochemical dissociation of CO 2 and H 2O using nonstoichiometric ceria. Science 330:1797–1801 CrossRef Chueh WC, Falter C, Abbott M, Scipio D, Furler P et al (2010) High-flux solar-driven thermochemical dissociation of CO 2 and H 2O using nonstoichiometric ceria. Science 330:1797–1801 CrossRef
26.
go back to reference Schwarzboezl P, Pomp S, Koll G, Hennecke K, Hartz T, et al (2010) The solar tower in Jülich – first operational experiences and test results; 2010 21–24 Sep. Perpignan, France Schwarzboezl P, Pomp S, Koll G, Hennecke K, Hartz T, et al (2010) The solar tower in Jülich – first operational experiences and test results; 2010 21–24 Sep. Perpignan, France
27.
go back to reference Tamme R, Taut U, Streuber C, Kalfa H (1991) Energy storage development for solar thermal processes. Sol Energy Mater 24:386–396 CrossRef Tamme R, Taut U, Streuber C, Kalfa H (1991) Energy storage development for solar thermal processes. Sol Energy Mater 24:386–396 CrossRef
28.
go back to reference Zunft S, Hänel M, Krüger M, Dreißigacker V, Göhring F et al (2011) Jülich Solar Power Tower – experimental evaluation of the storage subsystem and performance calculation. J Sol Energy Eng 133:031019 CrossRef Zunft S, Hänel M, Krüger M, Dreißigacker V, Göhring F et al (2011) Jülich Solar Power Tower – experimental evaluation of the storage subsystem and performance calculation. J Sol Energy Eng 133:031019 CrossRef
29.
go back to reference Agrafiotis C, Roeb M, Sattler C (2014) Cobalt oxide-based structured thermochemical reactors/heat exchangers for solar thermal energy storage in Concentrated Solar Power plants. Am Soc Mech Eng. pp V001T002A005 Agrafiotis C, Roeb M, Sattler C (2014) Cobalt oxide-based structured thermochemical reactors/heat exchangers for solar thermal energy storage in Concentrated Solar Power plants. Am Soc Mech Eng. pp V001T002A005
30.
go back to reference Agrafiotis C, Roeb M, Schmücker M, Sattler C (2014) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: testing of cobalt oxide-based powders. Sol Energy 102:189–211 CrossRef Agrafiotis C, Roeb M, Schmücker M, Sattler C (2014) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: testing of cobalt oxide-based powders. Sol Energy 102:189–211 CrossRef
31.
go back to reference Karagiannakis G, Pagkoura C, Zygogianni A, Lorentzou S, Konstandopoulos A (2014) Monolithic ceramic redox materials for thermochemical heat storage applications in CSP plants. Energy Procedia 49:820–829 CrossRef Karagiannakis G, Pagkoura C, Zygogianni A, Lorentzou S, Konstandopoulos A (2014) Monolithic ceramic redox materials for thermochemical heat storage applications in CSP plants. Energy Procedia 49:820–829 CrossRef
32.
go back to reference Tescari S, Agrafiotis C, Breuer S, de Oliveira L, Neises-von Puttkamer M et al (2014) Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts. Energy Procedia 49:1034–1043 CrossRef Tescari S, Agrafiotis C, Breuer S, de Oliveira L, Neises-von Puttkamer M et al (2014) Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts. Energy Procedia 49:1034–1043 CrossRef
33.
go back to reference Cordes S, Fiebig M, Pitz-Paal R (1992) First experimental results from the test of a selective volumetric air receiver. In: 6th international symposium on solar thermal concentrating technologies, Mojacar, Spain Cordes S, Fiebig M, Pitz-Paal R (1992) First experimental results from the test of a selective volumetric air receiver. In: 6th international symposium on solar thermal concentrating technologies, Mojacar, Spain
34.
go back to reference ASTM (1993) Standard test method for solar absorptance, reflectance, and transmittance of materials using integrating spheres. Annual book of ASTM Standards 1993. ASTM, Philadelphia, pp 512–520 ASTM (1993) Standard test method for solar absorptance, reflectance, and transmittance of materials using integrating spheres. Annual book of ASTM Standards 1993. ASTM, Philadelphia, pp 512–520
35.
go back to reference ASTM (1992) Standard tables for terrestrial direct normal solar spectral irradiance for air mass 1.5. Annual book of ASTM standards 1993, vol. 1202, Philadelphia, pp 481–486 ASTM (1992) Standard tables for terrestrial direct normal solar spectral irradiance for air mass 1.5. Annual book of ASTM standards 1993, vol. 1202, Philadelphia, pp 481–486
36.
go back to reference Heck RM, Gulati S, Farrauto RJ (2001) The application of monoliths for gas phase catalytic reactions. Chem Eng J 82:149–156 CrossRef Heck RM, Gulati S, Farrauto RJ (2001) The application of monoliths for gas phase catalytic reactions. Chem Eng J 82:149–156 CrossRef
37.
go back to reference Buck R (2000) Massenstrom-Instabilitäten bei volumetrischen Receiver-Reaktoren. VDI-Verlag, Düsseldorf Buck R (2000) Massenstrom-Instabilitäten bei volumetrischen Receiver-Reaktoren. VDI-Verlag, Düsseldorf
38.
go back to reference Pitz-Paal R, Hoffschmidt B, Böhmer M, Becker M (1997) Experimental and numerical evaluation of performance and flow stability of different types of open volumetric absorbers under non-homogeneous irradiation. Sol Energy 60:135–150 CrossRef Pitz-Paal R, Hoffschmidt B, Böhmer M, Becker M (1997) Experimental and numerical evaluation of performance and flow stability of different types of open volumetric absorbers under non-homogeneous irradiation. Sol Energy 60:135–150 CrossRef
39.
go back to reference Hoffschmidt B (1997) Vergleichende Bewertung verschiedener Konzepte volumetrischer Strahlungsempfänger. DLR Forschungsbericht, Köln Hoffschmidt B (1997) Vergleichende Bewertung verschiedener Konzepte volumetrischer Strahlungsempfänger. DLR Forschungsbericht, Köln
40.
go back to reference Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim CrossRef Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim CrossRef
41.
go back to reference Téllez F, Romero M, Heller P, Valverde A, Reche JF, Ulmer S, Dibowski G (2004) Thermal performance of SolAir 3000 kWth ceramic volumetric solar receiver, Oaxaca, Mexico Téllez F, Romero M, Heller P, Valverde A, Reche JF, Ulmer S, Dibowski G (2004) Thermal performance of SolAir 3000 kWth ceramic volumetric solar receiver, Oaxaca, Mexico
42.
go back to reference Agrafiotis CC, Mavroidis I, Konstandopoulos AG, Hoffschmidt B, Stobbe P et al (2007) Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Sol Energy Mater Sol Cells 91:474–488 CrossRef Agrafiotis CC, Mavroidis I, Konstandopoulos AG, Hoffschmidt B, Stobbe P et al (2007) Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Sol Energy Mater Sol Cells 91:474–488 CrossRef
43.
go back to reference Capuano R, Fend T, Stadler H, Hoffschmidt B, Pitz-Paal R (2017) Optimized volumetric solar receiver: thermal performance prediction and experimental validation. Renew Energy 114:556–566 CrossRef Capuano R, Fend T, Stadler H, Hoffschmidt B, Pitz-Paal R (2017) Optimized volumetric solar receiver: thermal performance prediction and experimental validation. Renew Energy 114:556–566 CrossRef
44.
go back to reference Klöden B (2012) Principle workflow of EBM-process. Laser Technik J 2:33–38 Klöden B (2012) Principle workflow of EBM-process. Laser Technik J 2:33–38
45.
go back to reference Brück R, Diewald R, Hirth P, Kaiser FW (1995) Design criteria for metallic substrates for catalytic converters. SAE Trans 104:552–561 Brück R, Diewald R, Hirth P, Kaiser FW (1995) Design criteria for metallic substrates for catalytic converters. SAE Trans 104:552–561
46.
go back to reference Pabst C, Feckler G, Schmitz S, Smirnova O, Capuano R, Hirth P, Fend T (2017) Experimental performance of an advanced metal volumetric air receiver for Solar Towers. Renew Energy 106:91–98 CrossRef Pabst C, Feckler G, Schmitz S, Smirnova O, Capuano R, Hirth P, Fend T (2017) Experimental performance of an advanced metal volumetric air receiver for Solar Towers. Renew Energy 106:91–98 CrossRef
47.
go back to reference Medina A, Sanchez-Orgaz S, Calvo Hernández A (2013) Solar-driven gas turbine power plants. In: International conference on renewable energies and power quality (ICREPQ 13). Bilbao (Spain) Medina A, Sanchez-Orgaz S, Calvo Hernández A (2013) Solar-driven gas turbine power plants. In: International conference on renewable energies and power quality (ICREPQ 13). Bilbao (Spain)
48.
go back to reference Schwarzboezl P, Buck R, Sugarmen C, Ring A, Marcos Crespo MJ, Altwegg P, Enrile J (2006) Solar gas turbine systems: design, cost and perspectives. Sol Energy 80:1231–1240 CrossRef Schwarzboezl P, Buck R, Sugarmen C, Ring A, Marcos Crespo MJ, Altwegg P, Enrile J (2006) Solar gas turbine systems: design, cost and perspectives. Sol Energy 80:1231–1240 CrossRef
49.
go back to reference Haeger M, Keller L, Montereal R, Valverde A (1994) PHOEBUS technology Program Solar Air Receiver (TSA): experimental set-up for TSA at the CESATest facility of the Plataforma Solar de Almeria (PSA), pp 643–647 Haeger M, Keller L, Montereal R, Valverde A (1994) PHOEBUS technology Program Solar Air Receiver (TSA): experimental set-up for TSA at the CESATest facility of the Plataforma Solar de Almeria (PSA), pp 643–647
50.
go back to reference Avila-Marin AL, Alvarez-Laraa M, Fernandez-Reche J (2014) Experimental results of gradual porosity wire mesh absorber for volumetric receivers. Energy Procedia 49:275–283 CrossRef Avila-Marin AL, Alvarez-Laraa M, Fernandez-Reche J (2014) Experimental results of gradual porosity wire mesh absorber for volumetric receivers. Energy Procedia 49:275–283 CrossRef
51.
go back to reference Muir JF, Hogan RE, Skocypec RD, Buck R (1994) Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: test and analysis. Sol Energy 52:467–477 CrossRef Muir JF, Hogan RE, Skocypec RD, Buck R (1994) Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: test and analysis. Sol Energy 52:467–477 CrossRef
52.
go back to reference Wörner A, Tamme R (1998) CO 2 reforming of methane in a solar driven volumetric receiver–reactor. Catal Today 46:165–174 CrossRef Wörner A, Tamme R (1998) CO 2 reforming of methane in a solar driven volumetric receiver–reactor. Catal Today 46:165–174 CrossRef
53.
go back to reference Abele M, Bauer H, Buck R, Tamme R, Wörner A (1996) Design and test results of a receiver-reactor for solar methane reforming in solar engineering. In: Davidson JH, Chavez, J (eds) Solar engineering. American Society of Mechanical Engineers (ASTM), New York, pp 339–346 Abele M, Bauer H, Buck R, Tamme R, Wörner A (1996) Design and test results of a receiver-reactor for solar methane reforming in solar engineering. In: Davidson JH, Chavez, J (eds) Solar engineering. American Society of Mechanical Engineers (ASTM), New York, pp 339–346
54.
go back to reference Möller S, Buck R, Tamme R, Epstein M, Liebermann D, Meri M, Fisher U, Rotstein A, Sugarmen C (2002) Solar production of syngas for electricity generation: SOLASYS project test-phase. In: 11th SolarPACES international symposium on concentrated solar power and chemical energy technologies, Zürich, Switzerland Möller S, Buck R, Tamme R, Epstein M, Liebermann D, Meri M, Fisher U, Rotstein A, Sugarmen C (2002) Solar production of syngas for electricity generation: SOLASYS project test-phase. In: 11th SolarPACES international symposium on concentrated solar power and chemical energy technologies, Zürich, Switzerland
55.
go back to reference Fend T, Reutter O, Pitz-Paal R, Hoffschmidt B, Bauer J (2004) Two novel high-porosity materials as volumetric receivers for concentrated solar radiation. Sol Energy Mater Sol Cells 84:291–304 CrossRef Fend T, Reutter O, Pitz-Paal R, Hoffschmidt B, Bauer J (2004) Two novel high-porosity materials as volumetric receivers for concentrated solar radiation. Sol Energy Mater Sol Cells 84:291–304 CrossRef
56.
go back to reference Poživil P, Aga V, Zagorskiy A, Steinfeld A (2014) A pressurized air receiver for solar-driven gas turbines. Energy Procedia 49:498–503 CrossRef Poživil P, Aga V, Zagorskiy A, Steinfeld A (2014) A pressurized air receiver for solar-driven gas turbines. Energy Procedia 49:498–503 CrossRef
57.
go back to reference Fend T, Hoffschmidt B, Pitz-Paal R, Reutter O, Rietbrock P (2004) Porous materials as open volumetric solar receivers: experimental determination of thermophysical and heat transfer properties. Energy 29:823–833 CrossRef Fend T, Hoffschmidt B, Pitz-Paal R, Reutter O, Rietbrock P (2004) Porous materials as open volumetric solar receivers: experimental determination of thermophysical and heat transfer properties. Energy 29:823–833 CrossRef
58.
go back to reference Sattler C, Roeb M, Agrafiotis C, Thomey D (2017) Solar hydrogen production via sulphur based thermochemical water-splitting. Sol Energy 156:30–47 CrossRef Sattler C, Roeb M, Agrafiotis C, Thomey D (2017) Solar hydrogen production via sulphur based thermochemical water-splitting. Sol Energy 156:30–47 CrossRef
59.
go back to reference Levy M, Rosin H, Levitan R (1989) Chemical reactions in a solar furnace by direct solar irradiation of the catalyst. J Sol Energy Eng 111:96 CrossRef Levy M, Rosin H, Levitan R (1989) Chemical reactions in a solar furnace by direct solar irradiation of the catalyst. J Sol Energy Eng 111:96 CrossRef
60.
go back to reference Levy M, Rubin R, Rosin H, Levitan R (1992) Methane reforming by direct solar irradiation of the catalyst. Energy 17:749–756 CrossRef Levy M, Rubin R, Rosin H, Levitan R (1992) Methane reforming by direct solar irradiation of the catalyst. Energy 17:749–756 CrossRef
61.
go back to reference Fend T, Pitz-Paal R, Hoffschmidt B, Reutter O (2006) In: Scheffler M, Colombo P (eds) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH Verlag GmbH &Co, Weinheim, pp 523–546 Fend T, Pitz-Paal R, Hoffschmidt B, Reutter O (2006) In: Scheffler M, Colombo P (eds) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH Verlag GmbH &Co, Weinheim, pp 523–546
62.
go back to reference Buck R, Muir JF, Hogan RE (1991) Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project. Sol Energy Mater 24:449–463 CrossRef Buck R, Muir JF, Hogan RE (1991) Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project. Sol Energy Mater 24:449–463 CrossRef
63.
go back to reference Tamme R, Buck R, Epstein M, Fisher U, Sugarmen C (2001) Solar upgrading of fuels for generation of electricity. J Sol Energy Eng 123:160–163 CrossRef Tamme R, Buck R, Epstein M, Fisher U, Sugarmen C (2001) Solar upgrading of fuels for generation of electricity. J Sol Energy Eng 123:160–163 CrossRef
64.
go back to reference Möller S, Kaucic D, Sattler C (2006) Hydrogen production by solar reforming of natural gas: a comparison study of two possible process configurations. J Sol Energy Eng 128:16–23 CrossRef Möller S, Kaucic D, Sattler C (2006) Hydrogen production by solar reforming of natural gas: a comparison study of two possible process configurations. J Sol Energy Eng 128:16–23 CrossRef
65.
go back to reference Meier A (2010) SolarPaces annual report – task II solar chemistry research Meier A (2010) SolarPaces annual report – task II solar chemistry research
66.
go back to reference Thomey D, de Oliveira L, Säck J-P, Roeb M, Sattler C (2012) Development and test of a solar reactor for decomposition of sulphuric acid in thermochemical hydrogen production. Int J Hydrog Energy 37:16615–16622 CrossRef Thomey D, de Oliveira L, Säck J-P, Roeb M, Sattler C (2012) Development and test of a solar reactor for decomposition of sulphuric acid in thermochemical hydrogen production. Int J Hydrog Energy 37:16615–16622 CrossRef
67.
go back to reference Thomey D, Roeb M, de Oliveira L, Gumpinger T, Schmücker M, et al (2010) Characterization of construction and catalyst materials for solar thermochemical hydrogen production, Karlsruhe, Germany Thomey D, Roeb M, de Oliveira L, Gumpinger T, Schmücker M, et al (2010) Characterization of construction and catalyst materials for solar thermochemical hydrogen production, Karlsruhe, Germany
68.
go back to reference Roeb M, Sattler C, Klüser R, Monnerie N, de Oliveira L et al (2006) Solar hydrogen production by a two-step cycle based on mixed iron oxides. J Sol Energy Eng 128:125–133 CrossRef Roeb M, Sattler C, Klüser R, Monnerie N, de Oliveira L et al (2006) Solar hydrogen production by a two-step cycle based on mixed iron oxides. J Sol Energy Eng 128:125–133 CrossRef
69.
go back to reference Gokon N, Hasegawa T, Takahashi S, Kodama T (2008) Thermochemical two-step water-splitting for hydrogen production using Fe-YSZ particles and a ceramic foam device. Energy 33:1407–1416 CrossRef Gokon N, Hasegawa T, Takahashi S, Kodama T (2008) Thermochemical two-step water-splitting for hydrogen production using Fe-YSZ particles and a ceramic foam device. Energy 33:1407–1416 CrossRef
70.
go back to reference Gokon N, Kodama T, Imaizumi N, Umeda J, Seo T (2011) Ferrite/zirconia-coated foam device prepared by spin coating for solar demonstration of thermochemical water-splitting. Int J Hydrog Energy 36:2014–2028 CrossRef Gokon N, Kodama T, Imaizumi N, Umeda J, Seo T (2011) Ferrite/zirconia-coated foam device prepared by spin coating for solar demonstration of thermochemical water-splitting. Int J Hydrog Energy 36:2014–2028 CrossRef
71.
go back to reference Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130:41001–41008 CrossRef Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130:41001–41008 CrossRef
72.
go back to reference Miller J, Allendorf M, Diver R, Evans L, Siegel N et al (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43:4714–4728 CrossRef Miller J, Allendorf M, Diver R, Evans L, Siegel N et al (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43:4714–4728 CrossRef
73.
go back to reference Walker LS, Miller JE, Hilmas GE, Evans LR, Corral EL (2011) Coextrusion of zirconia–iron oxide honeycomb substrates for solar-based thermochemical generation of carbon monoxide for renewable fuels. Energy Fuel 26:712–721 CrossRef Walker LS, Miller JE, Hilmas GE, Evans LR, Corral EL (2011) Coextrusion of zirconia–iron oxide honeycomb substrates for solar-based thermochemical generation of carbon monoxide for renewable fuels. Energy Fuel 26:712–721 CrossRef
74.
go back to reference Roeb M, Monnerie N, Schmitz M, Sattler C, Konstandopoulos A, et al (2006) Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates; 2006 June 13–16, Lyon, France Roeb M, Monnerie N, Schmitz M, Sattler C, Konstandopoulos A, et al (2006) Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates; 2006 June 13–16, Lyon, France
75.
go back to reference Roeb M, Säck JP, Rietbrock P, Prahl C, Schreiber H et al (2011) Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Sol Energy 85:634–644 CrossRef Roeb M, Säck JP, Rietbrock P, Prahl C, Schreiber H et al (2011) Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Sol Energy 85:634–644 CrossRef
76.
go back to reference Roeb M, Neises M, Säck J-P, Rietbrock P, Monnerie N et al (2009) Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrog Energy 34:4537–4545 CrossRef Roeb M, Neises M, Säck J-P, Rietbrock P, Monnerie N et al (2009) Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrog Energy 34:4537–4545 CrossRef
77.
go back to reference Houaijia A, Sattler C, Roeb M, Lange M, Breuer S et al (2013) Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water. Sol Energy 97:26–38 CrossRef Houaijia A, Sattler C, Roeb M, Lange M, Breuer S et al (2013) Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water. Sol Energy 97:26–38 CrossRef
78.
go back to reference Koepf E, Alxneit I, Wieckert C, Meier A (2017) A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute. Appl Energy 188:620–651 CrossRef Koepf E, Alxneit I, Wieckert C, Meier A (2017) A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute. Appl Energy 188:620–651 CrossRef
79.
go back to reference Furler P, Scheffe J, Marxer D, Gorbar M, Bonk A et al (2014) Thermochemical CO 2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities. Phys Chem Chem Phys 16:10503–10511 CrossRef Furler P, Scheffe J, Marxer D, Gorbar M, Bonk A et al (2014) Thermochemical CO 2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities. Phys Chem Chem Phys 16:10503–10511 CrossRef
80.
go back to reference Marxer DA, Furler P, Scheffe JR, Geerlings H, Falter C et al (2015) Demonstration of the entire production chain to renewable kerosene via solar-thermochemical splitting of H 2O and CO 2. Energy Fuel 29:3241 CrossRef Marxer DA, Furler P, Scheffe JR, Geerlings H, Falter C et al (2015) Demonstration of the entire production chain to renewable kerosene via solar-thermochemical splitting of H 2O and CO 2. Energy Fuel 29:3241 CrossRef
81.
go back to reference Furler P, Steinfeld A (2015) Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling. Chem Eng Sci 137:373–383 CrossRef Furler P, Steinfeld A (2015) Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling. Chem Eng Sci 137:373–383 CrossRef
82.
go back to reference Karagiannakis G, Pagkoura C, Konstandopoulos AG, Tescari S, Singh A, et al (2016) Thermochemical storage for CSP via redox structured reactors/heat exchangers: the RESTRUCTURE project. Proceedings of solarPACES, solar power and chemical energy systems. Abu Dhabi, United Arab Emirates Karagiannakis G, Pagkoura C, Konstandopoulos AG, Tescari S, Singh A, et al (2016) Thermochemical storage for CSP via redox structured reactors/heat exchangers: the RESTRUCTURE project. Proceedings of solarPACES, solar power and chemical energy systems. Abu Dhabi, United Arab Emirates
83.
go back to reference Agrafiotis C, Roeb M, Schmücker M, Sattler C (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:440–458 CrossRef Agrafiotis C, Roeb M, Schmücker M, Sattler C (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:440–458 CrossRef
84.
go back to reference Agrafiotis C, Tescari S, Roeb M, Schmücker M, Sattler C (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:459–475 CrossRef Agrafiotis C, Tescari S, Roeb M, Schmücker M, Sattler C (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:459–475 CrossRef
85.
go back to reference Agrafiotis C, Becker A, Roeb M, Sattler C (2016) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 5: testing of porous ceramic honeycomb and foam cascades based on cobalt and manganese oxides for hybrid sensible/thermochemical heat storage. Sol Energy 139:676–694 CrossRef Agrafiotis C, Becker A, Roeb M, Sattler C (2016) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 5: testing of porous ceramic honeycomb and foam cascades based on cobalt and manganese oxides for hybrid sensible/thermochemical heat storage. Sol Energy 139:676–694 CrossRef
86.
go back to reference Pagkoura C, Karagiannakis G, Zygogianni A, Lorentzou S, Kostoglou M et al (2014) Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants. Sol Energy 108:146–163 CrossRef Pagkoura C, Karagiannakis G, Zygogianni A, Lorentzou S, Kostoglou M et al (2014) Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants. Sol Energy 108:146–163 CrossRef
87.
go back to reference Pagkoura C, Karagiannakis G, Zygogianni A, Lorentzou S, Konstandopoulos AG (2015) Cobalt oxide based honeycombs as reactors/heat exchangers for redox thermochemical heat storage in future CSP plants. Energy Procedia 69:978–987 CrossRef Pagkoura C, Karagiannakis G, Zygogianni A, Lorentzou S, Konstandopoulos AG (2015) Cobalt oxide based honeycombs as reactors/heat exchangers for redox thermochemical heat storage in future CSP plants. Energy Procedia 69:978–987 CrossRef
88.
go back to reference Karagiannakis G, Pagkoura C, Halevas E, Baltzopoulou P, Konstandopoulos AG (2016) Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: multi-cyclic assessment and semi-quantitative heat effects estimations. Sol Energy 133:394–407 CrossRef Karagiannakis G, Pagkoura C, Halevas E, Baltzopoulou P, Konstandopoulos AG (2016) Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: multi-cyclic assessment and semi-quantitative heat effects estimations. Sol Energy 133:394–407 CrossRef
89.
go back to reference Singh A, Tescari S, Lantin G, Agrafiotis C, Roeb M et al (2017) Solar thermochemical heat storage via the Co 3O 4/CoO looping cycle: storage reactor modelling and experimental validation. Sol Energy 144:453–465 CrossRef Singh A, Tescari S, Lantin G, Agrafiotis C, Roeb M et al (2017) Solar thermochemical heat storage via the Co 3O 4/CoO looping cycle: storage reactor modelling and experimental validation. Sol Energy 144:453–465 CrossRef
90.
go back to reference Tescari S, Singh A, de Oliveira L, Breuer S, Agrafiotis C, et al 2016 Experimental proof of concept of a pilot-scale thermochemical storage unit; 2016 October 11th – 14th; Abu Dhabi, United Arab Emirates Tescari S, Singh A, de Oliveira L, Breuer S, Agrafiotis C, et al 2016 Experimental proof of concept of a pilot-scale thermochemical storage unit; 2016 October 11th – 14th; Abu Dhabi, United Arab Emirates
91.
go back to reference Tescari S, Singh A, de Oliveira L, Breuer S, Agrafiotis C et al (2017) Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant. Appl Energy 189:66–75 CrossRef Tescari S, Singh A, de Oliveira L, Breuer S, Agrafiotis C et al (2017) Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant. Appl Energy 189:66–75 CrossRef
92.
go back to reference Haeger M (1994) Phoebus technology program: solar air receiver (TSA). CIEMAT, Madrid, Spain Haeger M (1994) Phoebus technology program: solar air receiver (TSA). CIEMAT, Madrid, Spain
93.
go back to reference Palero S, Romero M, Estrada CA (2003) Experimental investigation in small scale volumetric solar receivers to study the mass flow instability and its comparison to theoretical models. ISES Solar World Congress 2003, Göteborg, Sweden Palero S, Romero M, Estrada CA (2003) Experimental investigation in small scale volumetric solar receivers to study the mass flow instability and its comparison to theoretical models. ISES Solar World Congress 2003, Göteborg, Sweden
94.
go back to reference Neumann A, Groer U (1996) Experimenting with concentrated sunlight using the DLR solar furnace. Sol Energy 58:181–190 CrossRef Neumann A, Groer U (1996) Experimenting with concentrated sunlight using the DLR solar furnace. Sol Energy 58:181–190 CrossRef
95.
go back to reference Garcia-Casals X, Ajona JI (1999) The duct selective volumetric receiver: potential for different selectivity strategies and stability issues. Sol Energy 67:265–268 CrossRef Garcia-Casals X, Ajona JI (1999) The duct selective volumetric receiver: potential for different selectivity strategies and stability issues. Sol Energy 67:265–268 CrossRef
96.
go back to reference Kribus A, Ries H, Spirkl W (1996) Inherent limitations of volumetric receivers. Sol Energy Eng 118:151 CrossRef Kribus A, Ries H, Spirkl W (1996) Inherent limitations of volumetric receivers. Sol Energy Eng 118:151 CrossRef
97.
go back to reference Palero SR, Manuel, Estrada CA, Castillo JL, Monterreal R, Fernandez-Reche J (2004) Experimental study of temperature distributions inside metallic monoliths used as volumetric solar absorbers. DGS-Munich and PSE-Freiburg. ISBN: 3-9809656-1-9 Palero SR, Manuel, Estrada CA, Castillo JL, Monterreal R, Fernandez-Reche J (2004) Experimental study of temperature distributions inside metallic monoliths used as volumetric solar absorbers. DGS-Munich and PSE-Freiburg. ISBN: 3-9809656-1-9
98.
go back to reference Capuano R (2017) Design of advanced porous geometry for open volumetric solar receiver based on numerical predictions. RWTH, Aachen Capuano R (2017) Design of advanced porous geometry for open volumetric solar receiver based on numerical predictions. RWTH, Aachen
99.
go back to reference Fricke J, Borst L (1984) Energie. R. Oldenbourg Verlag, München Fricke J, Borst L (1984) Energie. R. Oldenbourg Verlag, München
100.
go back to reference Säck J-P, Breuer S, Cotelli P, Houaijia A, Lange M et al (2016) High temperature hydrogen production: design of a 750 KW demonstration plant for a two step thermochemical cycle. Sol Energy 135:232–241 CrossRef Säck J-P, Breuer S, Cotelli P, Houaijia A, Lange M et al (2016) High temperature hydrogen production: design of a 750 KW demonstration plant for a two step thermochemical cycle. Sol Energy 135:232–241 CrossRef
101.
go back to reference Marxer D, Furler P, Takacs M, Steinfeld A (2017) Solar thermochemical splitting of CO 2 into separate streams of CO and O 2 with high selectivity, stability, conversion, and efficiency. Energy Environ Sci 10:1142–1149 CrossRef Marxer D, Furler P, Takacs M, Steinfeld A (2017) Solar thermochemical splitting of CO 2 into separate streams of CO and O 2 with high selectivity, stability, conversion, and efficiency. Energy Environ Sci 10:1142–1149 CrossRef
102.
go back to reference Agrafiotis C, Block T, Senholdt M, Tescari S, Roeb M et al (2017) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 6: testing of Mn-based combined oxides and porous structures. Sol Energy 149:227–244 CrossRef Agrafiotis C, Block T, Senholdt M, Tescari S, Roeb M et al (2017) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 6: testing of Mn-based combined oxides and porous structures. Sol Energy 149:227–244 CrossRef
103.
go back to reference Zunft S, Hänel M, Krüger M, Dreißigacker V (2014) A design study for regenerator-type heat storage in solar tower plants–results and conclusions of the HOTSPOT project. Energy Procedia 49:1088–1096 CrossRef Zunft S, Hänel M, Krüger M, Dreißigacker V (2014) A design study for regenerator-type heat storage in solar tower plants–results and conclusions of the HOTSPOT project. Energy Procedia 49:1088–1096 CrossRef
Metadata
Title
Porous Materials for Solar Energy Harvesting, Transformation, and Storage
Authors
Christos Agrafiotis
Thomas Fend
Martin Roeb
Copyright Year
2022
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-0716-1422-8_1054

Premium Partners