Skip to main content
Top

2023 | OriginalPaper | Chapter

Porphyrin and Phthalocyanine as Materials for Glass Coating—Structure and Properties

Authors : Barbara Popanda, Marcin Środa

Published in: Advances in Glass Research

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter is an introduction to the nature of phthalocyanines as materials for glass coatings. Data of the close analogues porphyrins is reported. The most widely used synthesis methods of porphyrins and phthalocyanines are discussed. The spectroscopic characteristic of the compounds is provided based on UV-ViS and photoluminescence studies. The nonlinear optical and electric properties of various metal-phthalocyanines are discussed. Current and future applications of the phthalocyanines are presented. This chapter is an introduction to the second one entitled “Phthalocyanine and porphyrin films on glass substrate—processing, properties, and applications” where characterizations of hybrid materials are described in detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference de Diesbach, H., & von der Weid, E. (1927). Helvetica Chimica Acta, 10, 886–888.CrossRef de Diesbach, H., & von der Weid, E. (1927). Helvetica Chimica Acta, 10, 886–888.CrossRef
3.
go back to reference Scottish Dyes Limited. (1929). GB Patent 322, 169. Scottish Dyes Limited. (1929). GB Patent 322, 169.
5.
15.
16.
go back to reference Erk, P., & Hengelsberg, H. (2003). Applications of phthalocyanines, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 19, p. 105). Elsevier Science. Erk, P., & Hengelsberg, H. (2003). Applications of phthalocyanines, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 19, p. 105). Elsevier Science.
17.
go back to reference McKeown, N. B. (2003). Phthalocyanines: Synthesis, K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 15, p. 61). Elsevier Science. McKeown, N. B. (2003). Phthalocyanines: Synthesis, K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 15, p. 61). Elsevier Science.
18.
go back to reference Arslan, S. (2016). Phthalocyanines: Structure, synthesis, purification and applications. Life Sciences, 6(2). Arslan, S. (2016). Phthalocyanines: Structure, synthesis, purification and applications. Life Sciences, 6(2).
19.
go back to reference Trytek, M., Makarska, M., Polska, K., Radzki, S., & Fiedurek, J. (2005). Porfiryny i ftalocyjaniny Cz. I. Właściwości i niektóre zastosowania. Biotechnologia, 4(71), 109. Trytek, M., Makarska, M., Polska, K., Radzki, S., & Fiedurek, J. (2005). Porfiryny i ftalocyjaniny Cz. I. Właściwości i niektóre zastosowania. Biotechnologia, 4(71), 109.
20.
go back to reference Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (pp. 11–19). Springer.CrossRef Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (pp. 11–19). Springer.CrossRef
22.
go back to reference Dyrda, G., Słota, R., & Wacławek, W. (2002). Phthalocyanines and related macrocyclic analogues. Chem Dydakt Ekol Metrol, 1–2, 33. Dyrda, G., Słota, R., & Wacławek, W. (2002). Phthalocyanines and related macrocyclic analogues. Chem Dydakt Ekol Metrol, 1–2, 33.
24.
go back to reference Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (p. 41). Springer. Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (p. 41). Springer.
26.
go back to reference Hunger, K. (Ed.). Industrial dyes: Chemistry, properties, applications. Wiley-VCH Verlag. Hunger, K. (Ed.). Industrial dyes: Chemistry, properties, applications. Wiley-VCH Verlag.
30.
go back to reference Słota, R., Dyrda, G., & Wacławek, W. (2001). Spectrophotometric determination of phthalocyanines Part II. Phthalocyanines stable in concentrated sulfuric acid. Chemia Analityczna (Warsaw), 46, 889. Słota, R., Dyrda, G., & Wacławek, W. (2001). Spectrophotometric determination of phthalocyanines Part II. Phthalocyanines stable in concentrated sulfuric acid. Chemia Analityczna (Warsaw), 46, 889.
31.
go back to reference Simon, J., & Andre, J. J. (2012). Molecular semiconductors: Photoelectrical properties and solar cells (pp. 73–76). Springer Science Q Business Media. Simon, J., & Andre, J. J. (2012). Molecular semiconductors: Photoelectrical properties and solar cells (pp. 73–76). Springer Science Q Business Media.
32.
go back to reference Gardens, O. (2007). Trends in optical materials research (pp. 1–54). Nova Publishers. Gardens, O. (2007). Trends in optical materials research (pp. 1–54). Nova Publishers.
39.
go back to reference Cuellar, E. A., Stojakovic, D. R., & Marks, T. J. (1980). In D. H. Busch (Ed.), Inorganic syntheses (Vol. XX, p. 97). Inorganic Syntheses Inc. Cuellar, E. A., Stojakovic, D. R., & Marks, T. J. (1980). In D. H. Busch (Ed.), Inorganic syntheses (Vol. XX, p. 97). Inorganic Syntheses Inc.
40.
go back to reference Day, V. W., Marks, T. J., & Wachter, W. A. (1975). Large metal ion-centered template reactions. A uranyl complex of cyclopentakis(2-iminoisoindoline). Journal of the American Chemical Society, 97, 4519. Day, V. W., Marks, T. J., & Wachter, W. A. (1975). Large metal ion-centered template reactions. A uranyl complex of cyclopentakis(2-iminoisoindoline). Journal of the American Chemical Society, 97, 4519.
41.
go back to reference Marks, T. J., & Stojakovic, D. R. (1978). Large metal ion-centered template reactions. chemical and spectral studies of the “Superphthalocyanine” dioxocyclopentakis(1-iminoisoindolinato)uranium( VI) and its derivatives. Journal of the American Chemical Society, 100(6), 1695. Marks, T. J., & Stojakovic, D. R. (1978). Large metal ion-centered template reactions. chemical and spectral studies of the “Superphthalocyanine” dioxocyclopentakis(1-iminoisoindolinato)uranium( VI) and its derivatives. Journal of the American Chemical Society, 100(6), 1695.
44.
go back to reference Bryden, F., Boyle, R. W. (2016). In R. van Eldik, & C. D. Hubbard (Eds.), Advances in inorganic chemistry (Vol. 68, p. 141). Elsevier Inc. Bryden, F., Boyle, R. W. (2016). In R. van Eldik, & C. D. Hubbard (Eds.), Advances in inorganic chemistry (Vol. 68, p. 141). Elsevier Inc.
45.
go back to reference Falk, J. E. (2014). In M. Florkin, & E. H. Stotz (Eds.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents. Comprehensive Biochemistry (Vol. 9). Elsevier. Falk, J. E. (2014). In M. Florkin, & E. H. Stotz (Eds.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents. Comprehensive Biochemistry (Vol. 9). Elsevier.
47.
go back to reference Kirin, I. S., Moskalev, P. N., & Makashev, Y. A. (1965). Russian Journal of Inorganic Chemistry, 10, 1065–1066. Kirin, I. S., Moskalev, P. N., & Makashev, Y. A. (1965). Russian Journal of Inorganic Chemistry, 10, 1065–1066.
48.
go back to reference Kirin, I. S., Moskalev, P. N., & Makashev, Y. A. (1967). Russian Journal of Inorganic Chemistry, 12, 369–372. Kirin, I. S., Moskalev, P. N., & Makashev, Y. A. (1967). Russian Journal of Inorganic Chemistry, 12, 369–372.
49.
go back to reference Murugesu, M. (2015). Lanthanides and actinides in molecular magnetism (p. 223). Wiley-VCH. Murugesu, M. (2015). Lanthanides and actinides in molecular magnetism (p. 223). Wiley-VCH.
52.
go back to reference Yamamoto, S., Dudkin, S. V., Kimura, M., & Kobayashi, N. (2019). Phthalocyanine synthesis and computational design of functional tetrapyrroles. K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of porphyrin science: with applications to chemistry, physics, materials science, engineering, biology and medicine (Vol. 45, p. 1). Yamamoto, S., Dudkin, S. V., Kimura, M., & Kobayashi, N. (2019). Phthalocyanine synthesis and computational design of functional tetrapyrroles. K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of porphyrin science: with applications to chemistry, physics, materials science, engineering, biology and medicine (Vol. 45, p. 1).
54.
go back to reference Arslan, S. (2016). Phthalocyanines: Structure, synthesis, purification and applications. Journal of Life Sciences, 6(2/2), 188. Arslan, S. (2016). Phthalocyanines: Structure, synthesis, purification and applications. Journal of Life Sciences, 6(2/2), 188.
55.
go back to reference Claessens, C. G., González-Rodríguez, D., McCallum, C. M., Nohr, R. S., Schuchmannd, H.-P., & Torres, T. (2007). On the mechanism of boron-subphthalocyanine chloride formation. Journal of Porphyrins Phthalocyanines, 11, 181. Claessens, C. G., González-Rodríguez, D., McCallum, C. M., Nohr, R. S., Schuchmannd, H.-P., & Torres, T. (2007). On the mechanism of boron-subphthalocyanine chloride formation. Journal of Porphyrins Phthalocyanines, 11, 181.
56.
go back to reference Rauschnabel, J., & Hanack, M. (1995). New derivatives and homologues of subphthalocyanine. Tetrahedron Letters, 36(10), 1629. Rauschnabel, J., & Hanack, M. (1995). New derivatives and homologues of subphthalocyanine. Tetrahedron Letters, 36(10), 1629.
57.
go back to reference del Rey, B., Keller, U., Torres, T., Rojo, G., Agulló-López, F., Nonell, S., Martí, C., Brasselet, S., Ledoux, I., & Zyss, J. (1998). Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines. Journal of the American Chemical Society, 120, 12808–12817. https://doi.org/10.1021/ja980508q.CrossRef del Rey, B., Keller, U., Torres, T., Rojo, G., Agulló-López, F., Nonell, S., Martí, C., Brasselet, S., Ledoux, I., & Zyss, J. (1998). Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines. Journal of the American Chemical Society, 120, 12808–12817. https://​doi.​org/​10.​1021/​ja980508q.CrossRef
58.
go back to reference Claessens, C. G.,González-Rodríguez, D., Rodríguez-Morgade, M. S., Medina, A., & Torres, T. (2014). Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems. Chemical Reviews, 114, 2192–2277. https://doi.org/10.1021/cr400088w. Claessens, C. G.,González-Rodríguez, D., Rodríguez-Morgade, M. S., Medina, A., & Torres, T. (2014). Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems. Chemical Reviews, 114, 2192–2277. https://​doi.​org/​10.​1021/​cr400088w.
62.
go back to reference Shirai, K., Takagi, A., Taniwaki, R., Kurata, M., Kinugasa, K., Yamamoto, K., Mizutani, T., Takao, Y., Moriwaki, K., Ito, T., Iwai, T., Matsumoto, F., & Ohno, T. (2018). Synthesis of chloroboron(III) 3,4,12,13,21,22-hexabromosubnaphthalocyanine under high dilution conditions and comparative studies of effects of halogenation on physicochemical properties of subnaphthalocyanines. Tetrahedron, 74, 4220–4225. https://doi.org/10.1016/j.tet.2018.06.043.CrossRef Shirai, K., Takagi, A., Taniwaki, R., Kurata, M., Kinugasa, K., Yamamoto, K., Mizutani, T., Takao, Y., Moriwaki, K., Ito, T., Iwai, T., Matsumoto, F., & Ohno, T. (2018). Synthesis of chloroboron(III) 3,4,12,13,21,22-hexabromosubnaphthalocyanine under high dilution conditions and comparative studies of effects of halogenation on physicochemical properties of subnaphthalocyanines. Tetrahedron, 74, 4220–4225. https://​doi.​org/​10.​1016/​j.​tet.​2018.​06.​043.CrossRef
63.
go back to reference Marks, T. J., & Stojakovic, D. R. (1978). Macrocycle contraction reactions of 5,35:14,19-Diimino-7,12:21,26:28,33 trinitrilopentabenzo[c, h, rn, r, w][1,6,11,16,2l]pentaazacyclopentacosinatodioxouranium(VI). Journal of the Chemical Society, Chemical Communications, 1, 28–29. https://doi.org/10.1039/C39750000028.CrossRef Marks, T. J., & Stojakovic, D. R. (1978). Macrocycle contraction reactions of 5,35:14,19-Diimino-7,12:21,26:28,33 trinitrilopentabenzo[c, h, rn, r, w][1,6,11,16,2l]pentaazacyclopentacosinatodioxouranium(VI). Journal of the Chemical Society, Chemical Communications, 1, 28–29. https://​doi.​org/​10.​1039/​C39750000028.CrossRef
64.
go back to reference Silver, J., & Jassim, Q. A. A. (1988). Reactions that Involve Collapse of the ‘Superphthalocyanine’ Dioxocyclopentakis(1-iminoisoindolinato)uranium(VI) to either Phthalocyanine or Metal Phthalocyanine. Inorganica Chimica Acta, 144, 281.CrossRef Silver, J., & Jassim, Q. A. A. (1988). Reactions that Involve Collapse of the ‘Superphthalocyanine’ Dioxocyclopentakis(1-iminoisoindolinato)uranium(VI) to either Phthalocyanine or Metal Phthalocyanine. Inorganica Chimica Acta, 144, 281.CrossRef
68.
go back to reference Adler, A. D., Longo, E. R., & Shergalis, W. (1964). Journal of the American Chemical Society, 86, 3145.CrossRef Adler, A. D., Longo, E. R., & Shergalis, W. (1964). Journal of the American Chemical Society, 86, 3145.CrossRef
69.
go back to reference Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., & Korsakoff, L. (1967). The Journal of Organic Chemistry, 32, 476.CrossRef Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., & Korsakoff, L. (1967). The Journal of Organic Chemistry, 32, 476.CrossRef
70.
go back to reference Kim, J. B., Leonard, J. J., & Longo, F. R. (1972). Journal of the American Chemical Society, 94, 3986.CrossRef Kim, J. B., Leonard, J. J., & Longo, F. R. (1972). Journal of the American Chemical Society, 94, 3986.CrossRef
71.
go back to reference Lindsey, J. S., Schreiman, I. C., Hsu, H. C., Keamey, P. C., & Marguerettaz, A. M. (1987). Journal of Organic Chemistry, 52, 827.CrossRef Lindsey, J. S., Schreiman, I. C., Hsu, H. C., Keamey, P. C., & Marguerettaz, A. M. (1987). Journal of Organic Chemistry, 52, 827.CrossRef
72.
go back to reference Lindsey, J. S., Hsu, H. C., & Schreiman, I. C. (1986). Tetrahedron Letters, 27, 4969.CrossRef Lindsey, J. S., Hsu, H. C., & Schreiman, I. C. (1986). Tetrahedron Letters, 27, 4969.CrossRef
73.
go back to reference Lindsey, J. S., & Wagner, R. W. (1989). Journal of Organic Chemistry, 54, 828.CrossRef Lindsey, J. S., & Wagner, R. W. (1989). Journal of Organic Chemistry, 54, 828.CrossRef
74.
go back to reference Lindsey, J. S., MacCrum, K. A., Tyhonas, J. S., & Chuang, Y. Y. (1994). Journal of Organic Chemistry, 59, 579.CrossRef Lindsey, J. S., MacCrum, K. A., Tyhonas, J. S., & Chuang, Y. Y. (1994). Journal of Organic Chemistry, 59, 579.CrossRef
75.
go back to reference Al Neyadi, S. S., Alzamly, A., Al-Hemyari, A., Tahir, I. M., Al-Meqbali, S., Ali Ahmad, M. A., & Bufaroosha, M. (2019). An undergraduate experiment using microwave-assisted synthesis of metalloporphyrins: Characterization and spectroscopic investigations. World Journal of Chemical Education, 7, 26–32. https://doi.org/10.12691/wjce-7-1-4. Al Neyadi, S. S., Alzamly, A., Al-Hemyari, A., Tahir, I. M., Al-Meqbali, S., Ali Ahmad, M. A., & Bufaroosha, M. (2019). An undergraduate experiment using microwave-assisted synthesis of metalloporphyrins: Characterization and spectroscopic investigations. World Journal of Chemical Education, 7, 26–32. https://​doi.​org/​10.​12691/​wjce-7-1-4.
76.
go back to reference Beletskaya, I. P., Uglov, A., Stern, C., & Guilard, R. (2012). Synthesis, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering, biology and medicine (Vol. 23, p. 81). World Scientific. Beletskaya, I. P., Uglov, A., Stern, C., & Guilard, R. (2012). Synthesis, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering, biology and medicine (Vol. 23, p. 81). World Scientific.
82.
go back to reference Kadish, K. M., Smith, K. M., & Guilard, R., (Eds.). (2010). Handbook of porphyrin science: With applications to chemistry, physics, materials science, engineering, biology and medicine. World Scientific. Kadish, K. M., Smith, K. M., & Guilard, R., (Eds.). (2010). Handbook of porphyrin science: With applications to chemistry, physics, materials science, engineering, biology and medicine. World Scientific.
83.
go back to reference Wacławek, W., & Dyrda, G. (2006). Oscillating redox transformations of lanthanide diphthalocyanines due to proton donors and electron acceptors. Chem Dydakt Ekol Metrol, 1–2, 21–34. Wacławek, W., & Dyrda, G. (2006). Oscillating redox transformations of lanthanide diphthalocyanines due to proton donors and electron acceptors. Chem Dydakt Ekol Metrol, 1–2, 21–34.
84.
go back to reference Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (pp. 107–132). Springer. Isago, H. (2015). Optical spectra of phthalocyanines and related compounds (pp. 107–132). Springer.
86.
go back to reference Kantekin, H., Yalazan, H., Kahriman, N., Ertem, B., Serdaroğlu, V., Pişkin, M., & Durmuş, M. (2018). New peripherally and non-peripherally tetra-substituted metal-free, magnesium(II) and zinc(II) phthalocyanine derivatives fused chalcone units: Design, synthesis, spectroscopic characterization, photochemistry and photophysics. Journal of Photochemistry and Photobiology A, 361, 1–11. https://doi.org/10.1016/j.jphotochem.2018.04.034.CrossRef Kantekin, H., Yalazan, H., Kahriman, N., Ertem, B., Serdaroğlu, V., Pişkin, M., & Durmuş, M. (2018). New peripherally and non-peripherally tetra-substituted metal-free, magnesium(II) and zinc(II) phthalocyanine derivatives fused chalcone units: Design, synthesis, spectroscopic characterization, photochemistry and photophysics. Journal of Photochemistry and Photobiology A, 361, 1–11. https://​doi.​org/​10.​1016/​j.​jphotochem.​2018.​04.​034.CrossRef
90.
go back to reference Demirbaş, Ü., Pişkin, M., Akçay, H. T., Barut, B., Durmuş, M., & Kantekin, H. (2017). Synthesis, characterisation, photophysical and photochemical properties of free-base tetra-(5-chloro-2-(2,4-dichlorophenoxy) phenoxy)phthalocyanine and respective zinc(II) and lead(II) complexes.Synthetic Metals, 223, 166–171. https://doi.org/10.1016/j.synthmet.2016.12.004. Demirbaş, Ü., Pişkin, M., Akçay, H. T., Barut, B., Durmuş, M., & Kantekin, H. (2017). Synthesis, characterisation, photophysical and photochemical properties of free-base tetra-(5-chloro-2-(2,4-dichlorophenoxy) phenoxy)phthalocyanine and respective zinc(II) and lead(II) complexes.Synthetic Metals, 223, 166–171. https://​doi.​org/​10.​1016/​j.​synthmet.​2016.​12.​004.
91.
go back to reference Demirbaş, Ü., Göl, C., Barut, B., Bayrak, R., Durmuş, M., Kantekin, H., & Değirmencioğlu, İ. (2017). Peripherally and non-peripherally tetra-benzothiazole substituted metal-free zinc (II) and lead (II) phthalocyanines: Synthesis, characterization, and investigation of photophysical and photochemical properties. Journal of Molecular Structure, 1130, 677–687. https://doi.org/10.1016/j.molstruc.2016.11.017. Demirbaş, Ü., Göl, C., Barut, B., Bayrak, R., Durmuş, M., Kantekin, H., & Değirmencioğlu, İ. (2017). Peripherally and non-peripherally tetra-benzothiazole substituted metal-free zinc (II) and lead (II) phthalocyanines: Synthesis, characterization, and investigation of photophysical and photochemical properties. Journal of Molecular Structure, 1130, 677–687. https://​doi.​org/​10.​1016/​j.​molstruc.​2016.​11.​017.
94.
go back to reference Ali, H. E. A., Pişkin, M., Altun, S., Durmuş, M., & Odabaş, Z. (2016). Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units. Journal of Luminescence, 173, 113–119. https://doi.org/10.1016/j.jlumin.2015.12.010. Ali, H. E. A., Pişkin, M., Altun, S., Durmuş, M., & Odabaş, Z. (2016). Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units. Journal of Luminescence, 173, 113–119. https://​doi.​org/​10.​1016/​j.​jlumin.​2015.​12.​010.
100.
go back to reference Gouterman, M. (1978). Physical chemistry, Part A, In D. Dolphin (Ed.), The porphyrins (Vol. 3, p. 1). Academic Press. Gouterman, M. (1978). Physical chemistry, Part A, In D. Dolphin (Ed.), The porphyrins (Vol. 3, p. 1). Academic Press.
101.
go back to reference Harvey, P. D. (2003). Multiporphyrins, multiphthalocyanines, and arrays, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 18, p. 63). Elsevier Science. Harvey, P. D. (2003). Multiporphyrins, multiphthalocyanines, and arrays, In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), The porphyrin handbook (Vol. 18, p. 63). Elsevier Science.
102.
103.
go back to reference Correa, D. S., De Boni, L., Parra, G. G., Misoguti, L., Mendonça, C. R., Borissevitch, I. E., Zílio, S. C., Neto, N. M. B., & Gonçalves, P. J. (2015). Excited-state absorption of meso-tetrasulfonatophenyl porphyrin: Effects of pH and micelles. Optical Materials, 42, 516–521. https://doi.org/10.1016/j.optmat.2015.01.047. Correa, D. S., De Boni, L., Parra, G. G., Misoguti, L., Mendonça, C. R., Borissevitch, I. E., Zílio, S. C., Neto, N. M. B., & Gonçalves, P. J. (2015). Excited-state absorption of meso-tetrasulfonatophenyl porphyrin: Effects of pH and micelles. Optical Materials, 42, 516–521. https://​doi.​org/​10.​1016/​j.​optmat.​2015.​01.​047.
109.
110.
111.
go back to reference Amiri, N., Hajji, M., Taheur, F. B., Chevreux, S., Roisnel, T., Lemercier, G., & Nasri, H. (2018). Two novel magnesium(II) meso-tetraphenylporphyrin-based coordination complexes: Syntheses, combined experimental and theoretical structures elucidation, spectroscopy, photophysical properties and antibacterial activity. Journal of Solid State Chemistry, 258, 477–484. https://doi.org/10.1016/j.jssc.2017.11.018. Amiri, N., Hajji, M., Taheur, F. B., Chevreux, S., Roisnel, T., Lemercier, G., & Nasri, H. (2018). Two novel magnesium(II) meso-tetraphenylporphyrin-based coordination complexes: Syntheses, combined experimental and theoretical structures elucidation, spectroscopy, photophysical properties and antibacterial activity. Journal of Solid State Chemistry, 258, 477–484. https://​doi.​org/​10.​1016/​j.​jssc.​2017.​11.​018.
115.
go back to reference Claessens, C. G., González-Rodríguez, D., Rodríguez-Morgade, M. S., Medina, A., & Torres, T. (2014). Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems. Chemical Reviews, 114(4), 2192–2277. https://doi.org/10.1021/cr400088w. Claessens, C. G., González-Rodríguez, D., Rodríguez-Morgade, M. S., Medina, A., & Torres, T. (2014). Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems. Chemical Reviews, 114(4), 2192–2277. https://​doi.​org/​10.​1021/​cr400088w.
117.
go back to reference Gotfredsen, H., Jevric, M., Broman, S. L., Petersen, A. U., & Nielsen, M. B. (2016). Aluminum chloride mediated alkynylation of boron subphthalocyanine chloride using trimethylsilyl-capped acetylenes. The Journal of Organic Chemistry, 81, 1−5. https://doi.org/10.1021/acs.joc.5b02719. Gotfredsen, H., Jevric, M., Broman, S. L., Petersen, A. U., & Nielsen, M. B. (2016). Aluminum chloride mediated alkynylation of boron subphthalocyanine chloride using trimethylsilyl-capped acetylenes. The Journal of Organic Chemistry, 81, 1−5. https://​doi.​org/​10.​1021/​acs.​joc.​5b02719.
121.
go back to reference Furuyama, T., Sato, T., & Kobayashi, N. (2015). A bottom-up synthesis of antiaromatic expanded phthalocyanines: Pentabenzotriazasmaragdyrins, i.e. Norcorroles of superphthalocyanines. Journal of the American Chemical Society, 137, 13788−13791. https://doi.org/10.1021/jacs.5b09853. Furuyama, T., Sato, T., & Kobayashi, N. (2015). A bottom-up synthesis of antiaromatic expanded phthalocyanines: Pentabenzotriazasmaragdyrins, i.e. Norcorroles of superphthalocyanines. Journal of the American Chemical Society, 137, 13788−13791. https://​doi.​org/​10.​1021/​jacs.​5b09853.
122.
go back to reference Fan, Q., Luy, J. N., Liebold, M., Greulich, K., Zugermeier, M., Sundermeyer, J., & Gottfried, J. M. (2019). Template-controlled on-surface synthesis of a lanthanide supernaphthalocyanine and its open-chain polycyanine counterpart. Nature Communications. https://doi.org/10.1038/s41467-019-13030-7. Fan, Q., Luy, J. N., Liebold, M., Greulich, K., Zugermeier, M., Sundermeyer, J., & Gottfried, J. M. (2019). Template-controlled on-surface synthesis of a lanthanide supernaphthalocyanine and its open-chain polycyanine counterpart. Nature Communications. https://​doi.​org/​10.​1038/​s41467-019-13030-7.
123.
126.
go back to reference Sampson, K. L., Josey, D. S., Li, Y., Virdo, J. D., Lu, Z.-H., & Bender, T. P. (2018). Ability to fine-tune the electronic properties and open-circuit voltage of phenoxy-boron subphthalocyanines through meta-fluorination of the axial substituent. The Journal of Physical Chemistry C, 122, 1091−1102. https://doi.org/10.1021/acs.jpcc.7b11157. Sampson, K. L., Josey, D. S., Li, Y., Virdo, J. D., Lu, Z.-H., & Bender, T. P. (2018). Ability to fine-tune the electronic properties and open-circuit voltage of phenoxy-boron subphthalocyanines through meta-fluorination of the axial substituent. The Journal of Physical Chemistry C, 122, 1091−1102. https://​doi.​org/​10.​1021/​acs.​jpcc.​7b11157.
127.
go back to reference Winterfeld, K. A., Lavarda, G., Guilleme, J., Sekita, M., Guldi, D. M., Torres, T., & Bottari, G. (2017). Subphthalocyanines axially substituted with a tetracyanobuta-1,3-diene−Aniline moiety: Synthesis, structure, and physicochemical properties. Journal of the American Chemical Society, 139, 5520–5529. https://doi.org/10.1021/jacs.7b01460.CrossRef Winterfeld, K. A., Lavarda, G., Guilleme, J., Sekita, M., Guldi, D. M., Torres, T., & Bottari, G. (2017). Subphthalocyanines axially substituted with a tetracyanobuta-1,3-diene−Aniline moiety: Synthesis, structure, and physicochemical properties. Journal of the American Chemical Society, 139, 5520–5529. https://​doi.​org/​10.​1021/​jacs.​7b01460.CrossRef
129.
go back to reference Makarova, E. A., Shimizu, S., Matsuda, A., Luk’yanets, E. A., & Kobayashi, N. (2008). Meso-Aryl tribenzosubporphyrin-a totally substituted subporphyrin species. Chemical Communications, 18, 2109–2111. https://doi.org/10.1039/b801712c. Makarova, E. A., Shimizu, S., Matsuda, A., Luk’yanets, E. A., & Kobayashi, N. (2008). Meso-Aryl tribenzosubporphyrin-a totally substituted subporphyrin species. Chemical Communications, 18, 2109–2111. https://​doi.​org/​10.​1039/​b801712c.
130.
go back to reference Shiina, Y., Karasaki, H., Moric, S., Kobayashi, N., Furuta, H., & Shimizu, S. (2016). A novel isoindole-containing polyaromatic hydrocarbon unexpectedly formed during the synthesis of meso-2,6-dichlorophenyl-substituted tribenzosubporphyrin. Journal of Porphyrins and Phthalocyanines, 20, 1049–1054. https://doi.org/10.1142/S1088424616500541.CrossRef Shiina, Y., Karasaki, H., Moric, S., Kobayashi, N., Furuta, H., & Shimizu, S. (2016). A novel isoindole-containing polyaromatic hydrocarbon unexpectedly formed during the synthesis of meso-2,6-dichlorophenyl-substituted tribenzosubporphyrin. Journal of Porphyrins and Phthalocyanines, 20, 1049–1054. https://​doi.​org/​10.​1142/​S108842461650054​1.CrossRef
144.
go back to reference Winterfeld, K. A., Lavarda, G., Yoshida, K., Bayerlein, M. J., Kise, K., Tanaka, T., Osuka, A., Guldi, D. M., Torres, T., & Bottari, G. (2020). Synthesis and optical features of axially- and peripherally-substituted subporphyrins. A paradigmatic example of charge transfer versus exciplex states. Journal of the American Chemical Society, 142, 1580–1589. https://doi.org/10.1021/jacs.0c01646. Winterfeld, K. A., Lavarda, G., Yoshida, K., Bayerlein, M. J., Kise, K., Tanaka, T., Osuka, A., Guldi, D. M., Torres, T., & Bottari, G. (2020). Synthesis and optical features of axially- and peripherally-substituted subporphyrins. A paradigmatic example of charge transfer versus exciplex states. Journal of the American Chemical Society, 142, 1580–1589. https://​doi.​org/​10.​1021/​jacs.​0c01646.
146.
go back to reference Lee, S.-K., Kim, J. O., Shimizu, D., Osuka, A., & Kim, D. (2016). Effect of bulky meso-substituents on photoinduced twisted intramolecular charge transfer processes in meso-diarylamino subporphyrins. Journal of Porphyrins Phthalocyanines, 20, 1–7. https://doi.org/10.1142/S1088424616500723. Lee, S.-K., Kim, J. O., Shimizu, D., Osuka, A., & Kim, D. (2016). Effect of bulky meso-substituents on photoinduced twisted intramolecular charge transfer processes in meso-diarylamino subporphyrins. Journal of Porphyrins Phthalocyanines, 20, 1–7. https://​doi.​org/​10.​1142/​S108842461650072​3.
149.
go back to reference Kumar, K. A., Kumar, S., Dharmaprakash, S. M., & Das, R. (2016). Impact of α→ β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films. The Journal of Physical Chemistry C, 120, 6733–6740. https://doi.org/10.1021/acs.jpcc.5b12328. Kumar, K. A., Kumar, S., Dharmaprakash, S. M., & Das, R. (2016). Impact of α→ β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films. The Journal of Physical Chemistry C, 120, 6733–6740. https://​doi.​org/​10.​1021/​acs.​jpcc.​5b12328.
151.
158.
165.
go back to reference Torres-Torres, D., Torres-Torres, C., Vega-Becerra, O., Cheang-Wong, J. C., Rodríguez-Fernández, L., Crespo-Sosa, A., & Oliver, A. (2019). Enhanced third order optical nonlinearity in ultrathin amorphous film of tetraphenyl-porphyrin in picosecond regime. Optics & Laser Technology. https://doi.org/10.1016/j.optlastec.2019.105642. Torres-Torres, D., Torres-Torres, C., Vega-Becerra, O., Cheang-Wong, J. C., Rodríguez-Fernández, L., Crespo-Sosa, A., & Oliver, A. (2019). Enhanced third order optical nonlinearity in ultrathin amorphous film of tetraphenyl-porphyrin in picosecond regime. Optics & Laser Technology. https://​doi.​org/​10.​1016/​j.​optlastec.​2019.​105642.
166.
go back to reference Vijisha, M. V., Parambath, S., Jagadeesan, R., Arunkumar, C., & Chandrasekharan, K. (2019). Nonlinear optical absorption and optical limiting studies of fluorinated pyridyl porphyrins in chlorobenzene: An insight into the photo-induced protonation effects. Dyes and Pigments, 169, 29–35. https://doi.org/10.1016/j.dyepig.2019.05.012. Vijisha, M. V., Parambath, S., Jagadeesan, R., Arunkumar, C., & Chandrasekharan, K. (2019). Nonlinear optical absorption and optical limiting studies of fluorinated pyridyl porphyrins in chlorobenzene: An insight into the photo-induced protonation effects. Dyes and Pigments, 169, 29–35. https://​doi.​org/​10.​1016/​j.​dyepig.​2019.​05.​012.
167.
168.
172.
178.
go back to reference Dini, D., & Hanack, M. (2003). Phthalocyanines: Properties and materials, In K. M. Kadish, K. M. Smith & R. Guilard (Eds.), The porphyrin handbook (Vol. 17, p. 1). Academic Press. Dini, D., & Hanack, M. (2003). Phthalocyanines: Properties and materials, In K. M. Kadish, K. M. Smith & R. Guilard (Eds.), The porphyrin handbook (Vol. 17, p. 1). Academic Press.
184.
go back to reference Kratochvílová, I., Šebera, J., Paruzel, B., Pfleger, J., Toman, P., Marešová, E., Havlová, Š, Hubík, P., Buryi, M., Vrňata, M., Słota, R., Zakrzyk, M., Lančok, J., & Novotný, M. (2018). Electronic functionality of Gd-bisphthalocyanine: Charge carrier concentration, charge mobility, and influence of local magnetic field. Synthetic Metals, 236, 68–78. https://doi.org/10.1016/j.synthmet.2018.01.007.CrossRef Kratochvílová, I., Šebera, J., Paruzel, B., Pfleger, J., Toman, P., Marešová, E., Havlová, Š, Hubík, P., Buryi, M., Vrňata, M., Słota, R., Zakrzyk, M., Lančok, J., & Novotný, M. (2018). Electronic functionality of Gd-bisphthalocyanine: Charge carrier concentration, charge mobility, and influence of local magnetic field. Synthetic Metals, 236, 68–78. https://​doi.​org/​10.​1016/​j.​synthmet.​2018.​01.​007.CrossRef
199.
go back to reference Andrianov, D. S., Farré, Y., Chen, K. J., Warnan, J., Planchat, A., Jacquemin, D., Cheprakov, A. V., & Odobel, F. (2016). Trans-disubstituted benzodiazaporphyrin: A promising hybrid dye between porphyrin and phthalocyanine for application in dye-sensitized solar cells. Journal of Photochemistry Photobiology A, 330, 186–194. https://doi.org/10.1016/j.jphotochem.2016.07.026.CrossRef Andrianov, D. S., Farré, Y., Chen, K. J., Warnan, J., Planchat, A., Jacquemin, D., Cheprakov, A. V., & Odobel, F. (2016). Trans-disubstituted benzodiazaporphyrin: A promising hybrid dye between porphyrin and phthalocyanine for application in dye-sensitized solar cells. Journal of Photochemistry Photobiology A, 330, 186–194. https://​doi.​org/​10.​1016/​j.​jphotochem.​2016.​07.​026.CrossRef
207.
go back to reference Fujishiroa, R., Sonoyama, H., Ide, Y., Fujimura, T., Sasai, R., Nagai, A., Mori, S., Kaufman, N. E. M., Zhou, Z., Graca, M., Vicente, H., & T. Ikeue, Synthesis, photodynamic activities, and cytotoxicity of new water-soluble cationic gallium(III) and zinc(II) phthalocyanines. Journal of Inorganic Biochemistry, 192, 7–16. https://doi.org/10.1016/j.jinorgbio.2018.11.013. Fujishiroa, R., Sonoyama, H., Ide, Y., Fujimura, T., Sasai, R., Nagai, A., Mori, S., Kaufman, N. E. M., Zhou, Z., Graca, M., Vicente, H., & T. Ikeue, Synthesis, photodynamic activities, and cytotoxicity of new water-soluble cationic gallium(III) and zinc(II) phthalocyanines. Journal of Inorganic Biochemistry, 192, 7–16. https://​doi.​org/​10.​1016/​j.​jinorgbio.​2018.​11.​013.
210.
211.
212.
go back to reference Cavalcante, L. L. R., Tedesco, A. C., Takahashi, L. A. U., Curylofo-Zottia, F. A., Souza-Gabriela, A. E., & Corona, S. A. M. (2020). Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: Synthesis, characterization and photoinactivation of Streptococcus mutans Biofilm. Photodiagnosis and Photodynamic. https://doi.org/10.1016/j.pdpdt.2020.101709.CrossRef Cavalcante, L. L. R., Tedesco, A. C., Takahashi, L. A. U., Curylofo-Zottia, F. A., Souza-Gabriela, A. E., & Corona, S. A. M. (2020). Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: Synthesis, characterization and photoinactivation of Streptococcus mutans Biofilm. Photodiagnosis and Photodynamic. https://​doi.​org/​10.​1016/​j.​pdpdt.​2020.​101709.CrossRef
214.
go back to reference Nesi-Reisa, V., Navasconi, T. R., Lera-Nosone, D. S. S. L., Oliveira, E. L., Barbosa, P. M., Caetano, W., Silveira, T. G. V., Aristides, S. M. A., Hioka, N., & Lonardoni, M. V. C. (2018). Phototoxic effect of aluminium-chlorine and aluminium-hydroxide phthalocyanines on Leishmania (l.) amazonensis. Photodiagnosis and Photodynamic, 21, 239–245. https://doi.org/10.1016/j.pdpdt.2017.12.008. Nesi-Reisa, V., Navasconi, T. R., Lera-Nosone, D. S. S. L., Oliveira, E. L., Barbosa, P. M., Caetano, W., Silveira, T. G. V., Aristides, S. M. A., Hioka, N., & Lonardoni, M. V. C. (2018). Phototoxic effect of aluminium-chlorine and aluminium-hydroxide phthalocyanines on Leishmania (l.) amazonensis. Photodiagnosis and Photodynamic, 21, 239–245. https://​doi.​org/​10.​1016/​j.​pdpdt.​2017.​12.​008.
220.
223.
224.
go back to reference Fakayode, O. J., Kruger, C. A., Songca, S. P., Abrahamse, H., & Oluwafemi, O. S. (2018). Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate against breast cancer cells. Materials Science and Engineering C, 92, 737–744. https://doi.org/10.1016/j.msec.2018.07.026.CrossRef Fakayode, O. J., Kruger, C. A., Songca, S. P., Abrahamse, H., & Oluwafemi, O. S. (2018). Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate against breast cancer cells. Materials Science and Engineering C, 92, 737–744. https://​doi.​org/​10.​1016/​j.​msec.​2018.​07.​026.CrossRef
226.
230.
go back to reference Ozturk, I., Tunçel, A., Ince, M., Ocakoglu, K., Hoșgör-Limoncu, M., & Yurt, F. (2018). Antibacterial properties of subphthalocyanine and subphthalocyanine-TiO2 nanoparticles on Staphylococcus aureus and Escherichia coli. Journal of Porphyrins and Phthalocyanines, 22, 1099–1105. https://doi.org/10.1142/S1088424618501122.CrossRef Ozturk, I., Tunçel, A., Ince, M., Ocakoglu, K., Hoșgör-Limoncu, M., & Yurt, F. (2018). Antibacterial properties of subphthalocyanine and subphthalocyanine-TiO2 nanoparticles on Staphylococcus aureus and Escherichia coli. Journal of Porphyrins and Phthalocyanines, 22, 1099–1105. https://​doi.​org/​10.​1142/​S108842461850112​2.CrossRef
231.
go back to reference Biyiklioglu, Z., Ozturk, I., Arslan, T., Tunçel, A., Ocakoglu, K., Hosgor-Limoncu, M., & Yurt, F. (2019). Synthesis and antimicrobial photodynamic activities of axially 4-[(1E)-3-oxo-3-(2-thienyl)prop-1-en-1-yl]phenoxy groups substituted silicon phthalocyanine, subphthalocyanine on Gram-positive and Gram-negative bacteria. Dyes and Pigments, 166, 149–158. https://doi.org/10.1016/j.dyepig.2019.03.010.CrossRef Biyiklioglu, Z., Ozturk, I., Arslan, T., Tunçel, A., Ocakoglu, K., Hosgor-Limoncu, M., & Yurt, F. (2019). Synthesis and antimicrobial photodynamic activities of axially 4-[(1E)-3-oxo-3-(2-thienyl)prop-1-en-1-yl]phenoxy groups substituted silicon phthalocyanine, subphthalocyanine on Gram-positive and Gram-negative bacteria. Dyes and Pigments, 166, 149–158. https://​doi.​org/​10.​1016/​j.​dyepig.​2019.​03.​010.CrossRef
232.
go back to reference Pradhan, S., Jityen, A., Juagwon, T., & Sinsarp, A. (2020). Development of electrochemical electrodes using carbon nanotube and metal phthalocyanine to classify pharmaceutical drugs. Materials Today: Proceedings, 23, 732. Pradhan, S., Jityen, A., Juagwon, T., & Sinsarp, A. (2020). Development of electrochemical electrodes using carbon nanotube and metal phthalocyanine to classify pharmaceutical drugs. Materials Today: Proceedings, 23, 732.
233.
go back to reference Lourenço, A. S., Nascimento, R. F., Silva, A. C., Ribeiro, W. F., Araujo, M. C. U., Oliveira, S. C. B., & Nascimento, V. B. (2018). Voltammetric determination of tartaric acid in wines by electrocatalytic oxidation on a cobalt(II)-phthalocyanine-modified electrode associated with multiway calibration. Analytica Chimica Acta, 1008, 29–37. https://doi.org/10.1016/j.aca.2018.01.005.CrossRef Lourenço, A. S., Nascimento, R. F., Silva, A. C., Ribeiro, W. F., Araujo, M. C. U., Oliveira, S. C. B., & Nascimento, V. B. (2018). Voltammetric determination of tartaric acid in wines by electrocatalytic oxidation on a cobalt(II)-phthalocyanine-modified electrode associated with multiway calibration. Analytica Chimica Acta, 1008, 29–37. https://​doi.​org/​10.​1016/​j.​aca.​2018.​01.​005.CrossRef
237.
238.
go back to reference Nikolaeva, N. S., Parkhomenko, R. G., Klyamer, D. D., Shushanyan, A. D., Asanov, I. P., Morozova, N. B., & Basova, T. V. (2017). Basova Bilayer structures based on metal phthalocyanine and palladium layers for selective hydrogen detection. International Journal of Hydrogen Energy, 42, 28640–28646. https://doi.org/10.1016/j.ijhydene.2017.09.129. Nikolaeva, N. S., Parkhomenko, R. G., Klyamer, D. D., Shushanyan, A. D., Asanov, I. P., Morozova, N. B., & Basova, T. V. (2017). Basova Bilayer structures based on metal phthalocyanine and palladium layers for selective hydrogen detection. International Journal of Hydrogen Energy, 42, 28640–28646. https://​doi.​org/​10.​1016/​j.​ijhydene.​2017.​09.​129.
242.
go back to reference Peng, R., Offenhäusser, A., Ermolenko, Y., & Mourzina, Y. (2020). Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media. Sensors and Actuators, B: Chemical. https://doi.org/10.1016/j.snb.2020.128437.CrossRef Peng, R., Offenhäusser, A., Ermolenko, Y., & Mourzina, Y. (2020). Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media. Sensors and Actuators, B: Chemical. https://​doi.​org/​10.​1016/​j.​snb.​2020.​128437.CrossRef
254.
266.
go back to reference Lin, C.-F., Liu, S.-W., Lee, C.-C., Sakurai, T., Kubota, M., Su, W.-C., Huang, J.-C., Chiu, T.-L., Han, H.-C., Chen, L.-C., Chen, C.-T., & Lee, J.-H. (2015). A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency. Solar Energy Materials and Solar Cells, 137, 138–145. https://doi.org/10.1016/j.solmat.2015.01.011. Lin, C.-F., Liu, S.-W., Lee, C.-C., Sakurai, T., Kubota, M., Su, W.-C., Huang, J.-C., Chiu, T.-L., Han, H.-C., Chen, L.-C., Chen, C.-T., & Lee, J.-H. (2015). A new anodic buffer layer material for non-mixed planar heterojunction chloroboron subphthalocyanine organic photovoltaic achieving 96% internal quantum efficiency. Solar Energy Materials and Solar Cells, 137, 138–145. https://​doi.​org/​10.​1016/​j.​solmat.​2015.​01.​011.
269.
go back to reference Josey, D. S., Nyikos, S. R., Garner, R. K., Dovijarski, A., Castrucci, J. S., Wang, J. M., Evans, G. J., & Bender, T. P. (2017). Outdoor performance and stability of boron subphthalocyanines applied as electron acceptors in fullerene-free organic photovoltaics. ACS Energy Letters, 2, 726–732. https://doi.org/10.1021/acsenergylett.6b00716.CrossRef Josey, D. S., Nyikos, S. R., Garner, R. K., Dovijarski, A., Castrucci, J. S., Wang, J. M., Evans, G. J., & Bender, T. P. (2017). Outdoor performance and stability of boron subphthalocyanines applied as electron acceptors in fullerene-free organic photovoltaics. ACS Energy Letters, 2, 726–732. https://​doi.​org/​10.​1021/​acsenergylett.​6b00716.CrossRef
Metadata
Title
Porphyrin and Phthalocyanine as Materials for Glass Coating—Structure and Properties
Authors
Barbara Popanda
Marcin Środa
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20266-7_8

Premium Partners