Skip to main content
Top

2024 | OriginalPaper | Chapter

Portfolio Construction Using Neural Networks and Multiobjective Optimization

Authors : Tsvetelin Tsonev, Slavi Georgiev, Ivan Georgiev, Vesela Mihova, Velizar Pavlov

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent times, financial markets have been increasingly affected by significant volatility and uncertainty. Given this backdrop, it is beneficial for investors to explore a broader range of asset classes when constructing their financial portfolios. This paper examines the concept of a mixed portfolio from 10 different assets. A technical analysis on the selected data has been conducted using Excel and MATLAB. Subsequent price movements of the chosen instruments were then predicted for the subsequent period employing NARXNN method. This led to the evaluation of the expected rates of return for these financial instruments. The estimations were then blended into an optimal risk portfolio, which maximizes return and minimizes risk, based on the solution to a multi-objective optimization problem. To assess risk, the standard deviations of the rates of return and the correlation matrix between the return rates of the considered financial instruments were utilized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Enders, W.: Applied Econometric Time Series. John Wiley, Inc., Hoboken, NJ, (1995). Enders, W.: Applied Econometric Time Series. John Wiley, Inc., Hoboken, NJ, (1995).
2.
go back to reference Tsay, R.: Analysis of Financial Time Series. Third Edition, John Wiley, Inc., New Jersey (2010). Tsay, R.: Analysis of Financial Time Series. Third Edition, John Wiley, Inc., New Jersey (2010).
3.
go back to reference Raeva, E., Nikolaev, I.: Retrospective Review of the Bulgarian Insurance Market Using Time Series Analysis. In: Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, Vol. 2522, pp. 1–10 (2022). Raeva, E., Nikolaev, I.: Retrospective Review of the Bulgarian Insurance Market Using Time Series Analysis. In: Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, Vol. 2522, pp. 1–10 (2022).
4.
go back to reference Smith, K. A., and Gupta, J. N. D.: Neural networks in business: techniques and applications for the operations researcher. In: Comp. & Ope. Res., 27, 1023–1044, (2000). Smith, K. A., and Gupta, J. N. D.: Neural networks in business: techniques and applications for the operations researcher. In: Comp. & Ope. Res., 27, 1023–1044, (2000).
5.
go back to reference Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 4th edition, Pearson Education, Inc., New Jersey, (2020). Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 4th edition, Pearson Education, Inc., New Jersey, (2020).
7.
go back to reference Kaewunruen, S., Osman, M.: Dealing with disruptions in railway track inspection using risk-based machine learning. In: Sci Rep 13, 2141 (2023). Kaewunruen, S., Osman, M.: Dealing with disruptions in railway track inspection using risk-based machine learning. In: Sci Rep 13, 2141 (2023).
8.
go back to reference Dickey, D. A., Fuller, W. A.: Distribution of the estimators for autoregressive time series with a unit root. In: J. Amer. Stat. Assoc., 74(366), pp. 427–431, (1979). Dickey, D. A., Fuller, W. A.: Distribution of the estimators for autoregressive time series with a unit root. In: J. Amer. Stat. Assoc., 74(366), pp. 427–431, (1979).
9.
go back to reference Kwiatkowski, D., Phillips, P. C. B., Schmidt, P, Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root. In: J. Econ., Vol. 54, pp. 159–178, (1992). Kwiatkowski, D., Phillips, P. C. B., Schmidt, P, Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root. In: J. Econ., Vol. 54, pp. 159–178, (1992).
10.
go back to reference Kihoro, J. M., Otieno, R. O., Wafula, C.: Seasonal time forecasting: A comparative study of ARIMA and ANN models. In: African Journal of Science and Technology, Science and Engineering Series, 5(2), pp. 41–49, (2004). Kihoro, J. M., Otieno, R. O., Wafula, C.: Seasonal time forecasting: A comparative study of ARIMA and ANN models. In: African Journal of Science and Technology, Science and Engineering Series, 5(2), pp. 41–49, (2004).
11.
go back to reference Zhang, P., Shen, C.: Choice of the number of hidden layers for back propagation neural network driven by stock price data and application to price prediction. In: Journal of Physics: Conf. Series, 1302, 022017, (2019). Zhang, P., Shen, C.: Choice of the number of hidden layers for back propagation neural network driven by stock price data and application to price prediction. In: Journal of Physics: Conf. Series, 1302, 022017, (2019).
12.
go back to reference Markova, M.: Forecasting EUR/USD exchange rate with nonlinear autoregressive with exogenous input neural networks. In: New Trends in the Applications of Differential Equations in Sciences, AIP Publishing, vol. 2459, pp. 030023–1 - 030023–9 (2022). Markova, M.: Forecasting EUR/USD exchange rate with nonlinear autoregressive with exogenous input neural networks. In: New Trends in the Applications of Differential Equations in Sciences, AIP Publishing, vol. 2459, pp. 030023–1 - 030023–9 (2022).
13.
go back to reference Bodie, Z., Kane, A., Marcus, A.: Investments. 10th global ed. McGraw-Hill Education, Berkshire, (2014). Bodie, Z., Kane, A., Marcus, A.: Investments. 10th global ed. McGraw-Hill Education, Berkshire, (2014).
14.
go back to reference Dochev, D., Petkov, I.: Theory of Decision Making. Science and Economics. Economic University – Varna, Bulgaria, (2008). Dochev, D., Petkov, I.: Theory of Decision Making. Science and Economics. Economic University – Varna, Bulgaria, (2008).
15.
go back to reference Georgiev, I., Deninska, V., Mihova, V., Pavlov, V.: Diversification and Optimization of the Financial Portfolio in Times of Uncertainty. In: New Trends of Differential Equations in Sciences, SPRINGER, pp. 307–317 (2023). Georgiev, I., Deninska, V., Mihova, V., Pavlov, V.: Diversification and Optimization of the Financial Portfolio in Times of Uncertainty. In: New Trends of Differential Equations in Sciences, SPRINGER, pp. 307–317 (2023).
16.
go back to reference Vitliemov, V.: Optimization Methods. 2nd ed., University of Ruse, Ruse, (2004). Vitliemov, V.: Optimization Methods. 2nd ed., University of Ruse, Ruse, (2004).
17.
go back to reference Pareto, V.: Notice biographique. Centre d’Etudes Interdisciplinires Walras, (2003). Pareto, V.: Notice biographique. Centre d’Etudes Interdisciplinires Walras, (2003).
18.
go back to reference Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, MA, (1999). Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, MA, (1999).
Metadata
Title
Portfolio Construction Using Neural Networks and Multiobjective Optimization
Authors
Tsvetelin Tsonev
Slavi Georgiev
Ivan Georgiev
Vesela Mihova
Velizar Pavlov
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_32

Premium Partner