Skip to main content
Top
Published in: Journal of Scientific Computing 1/2017

27-09-2016

Positivity-Preserving Discontinuous Galerkin Methods with Lax–Wendroff Time Discretizations

Authors: Scott A. Moe, James A. Rossmanith, David C. Seal

Published in: Journal of Scientific Computing | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work introduces a single-stage, single-step method for the compressible Euler equations that is provably positivity-preserving and can be applied on both Cartesian and unstructured meshes. This method is the first case of a single-stage, single-step method that is simultaneously high-order, positivity-preserving, and operates on unstructured meshes. Time-stepping is accomplished via the Lax–Wendroff approach, which is also sometimes called the Cauchy–Kovalevskaya procedure, where temporal derivatives in a Taylor series in time are exchanged for spatial derivatives. The Lax–Wendroff discontinuous Galerkin (LxW-DG) method developed in this work is formulated so that it looks like a forward Euler update but with a high-order time-extrapolated flux. In particular, the numerical flux used in this work is a convex combination of a low-order positivity-preserving contribution and a high-order component that can be damped to enforce positivity of the cell averages for the density and pressure for each time step. In addition to this flux limiter, a moment limiter is applied that forces positivity of the solution at finitely many quadrature points within each cell. The combination of the flux limiter and the moment limiter guarantees positivity of the cell averages from one time-step to the next. Finally, a simple shock capturing limiter that uses the same basic technology as the moment limiter is introduced in order to obtain non-oscillatory results. The resulting scheme can be extended to arbitrary order without increasing the size of the effective stencil. We present numerical results in one and two space dimensions that demonstrate the robustness of the proposed scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary Lagrangian–Eulerian methods. J. Comput. Phys. 230(13), 5199–5225 (2011)MathSciNetCrossRefMATH Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary Lagrangian–Eulerian methods. J. Comput. Phys. 230(13), 5199–5225 (2011)MathSciNetCrossRefMATH
2.
go back to reference Book, D.L.: Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations, vol. 1. Springer-Verlag, New York (1981)CrossRefMATH Book, D.L.: Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations, vol. 1. Springer-Verlag, New York (1981)CrossRefMATH
3.
go back to reference Book, D.L., Boris, J.P., Hain, K.: Flux-corrected transport II: generalizations of the method. J. Comput. Phys. 18(3), 248–283 (1975)CrossRefMATH Book, D.L., Boris, J.P., Hain, K.: Flux-corrected transport II: generalizations of the method. J. Comput. Phys. 18(3), 248–283 (1975)CrossRefMATH
4.
go back to reference Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)CrossRefMATH Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)CrossRefMATH
5.
go back to reference Boris, J.P., Book, D.L.: Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20(4), 397–431 (1976)CrossRefMATH Boris, J.P., Book, D.L.: Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20(4), 397–431 (1976)CrossRefMATH
6.
go back to reference Christlieb, A.J., Feng, X., Seal, D.C., Tang, Q.: A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations. arXiv preprint arXiv:1509.09208 (2015) Christlieb, A.J., Feng, X., Seal, D.C., Tang, Q.: A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations. arXiv preprint arXiv:​1509.​09208 (2015)
7.
go back to reference Christlieb, A.J., Güçlü, Y., Seal, D.C.: The Picard integral formulation of weighted essentially nonoscillatory schemes. SIAM J. Numer. Anal. 53(4), 1833–1856 (2015)MathSciNetCrossRefMATH Christlieb, A.J., Güçlü, Y., Seal, D.C.: The Picard integral formulation of weighted essentially nonoscillatory schemes. SIAM J. Numer. Anal. 53(4), 1833–1856 (2015)MathSciNetCrossRefMATH
8.
go back to reference Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 281, 334–351 (2015)MathSciNetCrossRefMATH Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 281, 334–351 (2015)MathSciNetCrossRefMATH
9.
go back to reference Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)MathSciNetCrossRefMATH Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)MathSciNetCrossRefMATH
10.
go back to reference Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comp. 54(190), 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comp. 54(190), 545–581 (1990)MathSciNetMATH
11.
go back to reference Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50. Springer, Berlin (2000) Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50. Springer, Berlin (2000)
12.
go back to reference Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetCrossRefMATH Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetCrossRefMATH
13.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)MathSciNetMATH
14.
go back to reference Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys 141(2), 199–224 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys 141(2), 199–224 (1998)MathSciNetCrossRefMATH
15.
go back to reference Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure. Appl. Math. 5, 243–255 (1952)MathSciNetCrossRefMATH Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure. Appl. Math. 5, 243–255 (1952)MathSciNetCrossRefMATH
16.
go back to reference Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)MathSciNetCrossRefMATH Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)MathSciNetCrossRefMATH
17.
go back to reference Dumbser, M., Käser, M., Toro, E.F.: An arbitrary high-order discontinuous galerkin method for elastic waves on unstructured meshes-v. Local time stepping and p-adaptivity. Geophys. J. Int. 171(2), 695–717 (2007)CrossRef Dumbser, M., Käser, M., Toro, E.F.: An arbitrary high-order discontinuous galerkin method for elastic waves on unstructured meshes-v. Local time stepping and p-adaptivity. Geophys. J. Int. 171(2), 695–717 (2007)CrossRef
18.
go back to reference Dumbser, M., Munz, C.-D.: ADER discontinuous Galerkin schemes for aeroacoustics. Comptes Rendus Mécanique 333(9), 683–687 (2005)CrossRefMATH Dumbser, M., Munz, C.-D.: ADER discontinuous Galerkin schemes for aeroacoustics. Comptes Rendus Mécanique 333(9), 683–687 (2005)CrossRefMATH
19.
go back to reference Dumbser, M., Munz, C.-D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)MathSciNetCrossRefMATH Dumbser, M., Munz, C.-D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)MathSciNetCrossRefMATH
20.
go back to reference Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013)MathSciNetCrossRefMATH Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013)MathSciNetCrossRefMATH
21.
go back to reference Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.-D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230(11), 4232–4247 (2011)MathSciNetCrossRefMATH Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.-D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230(11), 4232–4247 (2011)MathSciNetCrossRefMATH
22.
go back to reference Godunov, S.K.: Difference method of computation of shock waves. Uspehi Mat. Nauk (N.S.) 12(1(73)), 176–177 (1957)MathSciNet Godunov, S.K.: Difference method of computation of shock waves. Uspehi Mat. Nauk (N.S.) 12(1(73)), 176–177 (1957)MathSciNet
23.
go back to reference Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH
24.
go back to reference Guo, W., Qiu, J.-M., Qiu, J.: A new Lax–Wendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65(1), 299–326 (2015)MathSciNetCrossRefMATH Guo, W., Qiu, J.-M., Qiu, J.: A new Lax–Wendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65(1), 299–326 (2015)MathSciNetCrossRefMATH
27.
go back to reference Kuzmin, D., Löhner, R., Turek, S., (eds.): Flux-Corrected Transport: Principles, Algorithms, and Applications. Scientific Computation. Springer, Berlin, Heidelberg (2005) Kuzmin, D., Löhner, R., Turek, S., (eds.): Flux-Corrected Transport: Principles, Algorithms, and Applications. Scientific Computation. Springer, Berlin, Heidelberg (2005)
29.
go back to reference Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)MathSciNetCrossRefMATH Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)MathSciNetCrossRefMATH
30.
go back to reference Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58(1), 41–60 (2014)MathSciNetCrossRefMATH Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58(1), 41–60 (2014)MathSciNetCrossRefMATH
31.
go back to reference Moe, S.A., Rossmanith, J.A., Seal, D.C.: A simple and effective high-order shock-capturing limiter for discontinuous Galerkin methods. arXiv preprint arXiv:1507.03024v1 (2015) Moe, S.A., Rossmanith, J.A., Seal, D.C.: A simple and effective high-order shock-capturing limiter for discontinuous Galerkin methods. arXiv preprint arXiv:​1507.​03024v1 (2015)
32.
33.
go back to reference Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)MathSciNetCrossRefMATH Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)MathSciNetCrossRefMATH
35.
go back to reference Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol 17, pp. 211–220 (2002) Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol 17, pp. 211–220 (2002)
37.
go back to reference Seal, D.C., Güçlü, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60(1), 101–140 (2014)MathSciNetCrossRefMATH Seal, D.C., Güçlü, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60(1), 101–140 (2014)MathSciNetCrossRefMATH
38.
go back to reference Seal, D.C., Tang, Q., Xu, Z., Christlieb, A.J.: An explicit high-order single-stage single-step positivity-preserving finite difference WENO method for the compressible Euler equations. J. Sci. Comput., 1–20 (2015) Seal, D.C., Tang, Q., Xu, Z., Christlieb, A.J.: An explicit high-order single-stage single-step positivity-preserving finite difference WENO method for the compressible Euler equations. J. Sci. Comput., 1–20 (2015)
39.
go back to reference Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)MATH Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)MATH
40.
go back to reference Shu, C.-W.: High order weno and dg methods for time-dependent convection-dominated pdes: a brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016)MathSciNetCrossRefMATH Shu, C.-W.: High order weno and dg methods for time-dependent convection-dominated pdes: a brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016)MathSciNetCrossRefMATH
41.
go back to reference Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetCrossRefMATH Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetCrossRefMATH
42.
go back to reference Taube, A., Dumbser, M., Balsara, D.S., Munz, C.-D.: Arbitrary high-order discontinuous Galerkin schemes for the magnetohydrodynamic equations. J. Sci. Comput. 30(3), 441–464 (2007)MathSciNetCrossRefMATH Taube, A., Dumbser, M., Balsara, D.S., Munz, C.-D.: Arbitrary high-order discontinuous Galerkin schemes for the magnetohydrodynamic equations. J. Sci. Comput. 30(3), 441–464 (2007)MathSciNetCrossRefMATH
43.
go back to reference Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol 17, pp. 609–618 (2002) Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol 17, pp. 609–618 (2002)
44.
go back to reference Ullrich, P.A., Norman, M.R.: The flux-form semi-Lagrangian spectral element (FF-SLSE) method for tracer transport. Q. J. R. Meteorol. Soc. 140(680), 1069–1085 (2014)CrossRef Ullrich, P.A., Norman, M.R.: The flux-form semi-Lagrangian spectral element (FF-SLSE) method for tracer transport. Q. J. R. Meteorol. Soc. 140(680), 1069–1085 (2014)CrossRef
45.
go back to reference Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)MathSciNetCrossRefMATH Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)MathSciNetCrossRefMATH
46.
go back to reference Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)MathSciNetCrossRefMATH Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)MathSciNetCrossRefMATH
47.
go back to reference Xiong, T., Qiu, J.-M., Xu, Z.: High-order maximum-principle-preserving discontinuous Galerkin method for convection-diffusion equations. SIAM J. Sci. Comput. 37, 583–608 (2015)MathSciNetCrossRefMATH Xiong, T., Qiu, J.-M., Xu, Z.: High-order maximum-principle-preserving discontinuous Galerkin method for convection-diffusion equations. SIAM J. Sci. Comput. 37, 583–608 (2015)MathSciNetCrossRefMATH
48.
go back to reference Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comp. 83(289), 2213–2238 (2014)MathSciNetCrossRefMATH Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comp. 83(289), 2213–2238 (2014)MathSciNetCrossRefMATH
49.
go back to reference Zalesak, S.T.: The design of flux-corrected transport (FCT) algorithms for structured grids. In: Flux-Corrected Transport. Scientific Computation, pp. 23–65. Springer, Berlin (2005) Zalesak, S.T.: The design of flux-corrected transport (FCT) algorithms for structured grids. In: Flux-Corrected Transport. Scientific Computation, pp. 23–65. Springer, Berlin (2005)
50.
go back to reference Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comp. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comp. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefMATH
51.
go back to reference Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A 467(2134), 2752–2776 (2011)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A 467(2134), 2752–2776 (2011)MathSciNetCrossRefMATH
52.
go back to reference Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29–62 (2012)MathSciNetCrossRefMATH Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29–62 (2012)MathSciNetCrossRefMATH
53.
go back to reference Zheng, H., Zhang, Z., Liu, E.: Non-linear seismic wave propagation in anisotropic media using the flux-corrected transport technique. Geophys. J. Int. 165(3), 943–956 (2006)CrossRef Zheng, H., Zhang, Z., Liu, E.: Non-linear seismic wave propagation in anisotropic media using the flux-corrected transport technique. Geophys. J. Int. 165(3), 943–956 (2006)CrossRef
Metadata
Title
Positivity-Preserving Discontinuous Galerkin Methods with Lax–Wendroff Time Discretizations
Authors
Scott A. Moe
James A. Rossmanith
David C. Seal
Publication date
27-09-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2017
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0291-9

Other articles of this Issue 1/2017

Journal of Scientific Computing 1/2017 Go to the issue

Premium Partner