Skip to main content
Top

2023 | OriginalPaper | Chapter

Positivity Preserving Rational Quartic Spline Zipper Fractal Interpolation Functions

Authors : Vijay, A. K. B. Chand

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the development of a novel rational quartic spline zipper fractal interpolation function (RQS ZFIF) with variable scaling functions. It begins by formulating a class of rational quartic splines using a binary vector, and then constructs the RQS ZFIF using zipper theory. The work includes a thorough convergence analysis, demonstrating that the RQS ZFIF can converge to a data generating function with a high order of accuracy. Additionally, it provides sufficient conditions for the RQS ZFIF to preserve positivity, making it suitable for applications involving positive data sets. The chapter concludes with numerical examples and a discussion on the expansion of the class of rational quartic splines, highlighting the flexibility and potential of the proposed method in various scientific and engineering domains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abbas, M., Majid, A.A., Awang, M.N.H., Ali, J.M.: Positivity-preserving \(C^2\) rational cubic spline interpolation. Sci. Asia 39, 208–213 (2013)CrossRef Abbas, M., Majid, A.A., Awang, M.N.H., Ali, J.M.: Positivity-preserving \(C^2\) rational cubic spline interpolation. Sci. Asia 39, 208–213 (2013)CrossRef
2.
go back to reference Aseev, V.V.: On the regularity of self-similar zippers. In: 6th Russian-Korean International Symposium on Science and Technology, KORUS-2002, 24–30 June 2002, Novosibirsk State Technical University Russia, NGTU, Novosibirsk, Part 3 (Abstracts), p. 167 (2002) Aseev, V.V.: On the regularity of self-similar zippers. In: 6th Russian-Korean International Symposium on Science and Technology, KORUS-2002, 24–30 June 2002, Novosibirsk State Technical University Russia, NGTU, Novosibirsk, Part 3 (Abstracts), p. 167 (2002)
3.
go back to reference Aseev, V.V., Tetenov, A.V.: On self-similar Jordan arcs that admit structural parametrization. Siberian Math. J. 46(4), 581–592 (2005)CrossRef Aseev, V.V., Tetenov, A.V.: On self-similar Jordan arcs that admit structural parametrization. Siberian Math. J. 46(4), 581–592 (2005)CrossRef
5.
go back to reference Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(1), 303–329 (1986)CrossRefMATH Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(1), 303–329 (1986)CrossRefMATH
6.
go back to reference Barnsley, M.F.: Fractals Everywhere. Academic Press, Boston (1988)MATH Barnsley, M.F.: Fractals Everywhere. Academic Press, Boston (1988)MATH
7.
go back to reference Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory 57(1), 14–34 (1989)CrossRefMATH Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory 57(1), 14–34 (1989)CrossRefMATH
8.
go back to reference Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)CrossRefMATH Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)CrossRefMATH
9.
go back to reference Chand, A.K.B., Tyada, K.R.: Constrained shape preserving rational cubic fractal interpolation functions. Rocky Mt. J. Math. 48(1), 75–105 (2018)CrossRefMATH Chand, A.K.B., Tyada, K.R.: Constrained shape preserving rational cubic fractal interpolation functions. Rocky Mt. J. Math. 48(1), 75–105 (2018)CrossRefMATH
10.
go back to reference Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo 51(2), 329–362 (2014)CrossRefMATH Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo 51(2), 329–362 (2014)CrossRefMATH
11.
go back to reference Chand, A.K.B., Vijender, N., Viswanathan, P., Tetenov, A.V.: Affine zipper fractal interpolation functions. BIT Num. Math. 60, 319–344 (2020)CrossRefMATH Chand, A.K.B., Vijender, N., Viswanathan, P., Tetenov, A.V.: Affine zipper fractal interpolation functions. BIT Num. Math. 60, 319–344 (2020)CrossRefMATH
12.
go back to reference Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53(4), 841–865 (2013)CrossRefMATH Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53(4), 841–865 (2013)CrossRefMATH
13.
go back to reference Duan, Q., Zhang, H., Zhang, Y., Twizell, E.H.: Error estimation of a kind of rational spline. J. Comput. Appl. Math. 2000, 1–11 (2007)CrossRefMATH Duan, Q., Zhang, H., Zhang, Y., Twizell, E.H.: Error estimation of a kind of rational spline. J. Comput. Appl. Math. 2000, 1–11 (2007)CrossRefMATH
15.
go back to reference Han, X.L.: Shape-preserving piecewise rational interpolant with quartic numerator and quadratic denominator. Appl. Math. Comput. 251, 258–274 (2015)MATH Han, X.L.: Shape-preserving piecewise rational interpolant with quartic numerator and quadratic denominator. Appl. Math. Comput. 251, 258–274 (2015)MATH
16.
go back to reference Hussain, M.Z., Sarfraz, M.: Positivity-preserving interpolation of positive data by rational cubics. J. Comput. Appl. Math. 218, 446–458 (2008)CrossRefMATH Hussain, M.Z., Sarfraz, M.: Positivity-preserving interpolation of positive data by rational cubics. J. Comput. Appl. Math. 218, 446–458 (2008)CrossRefMATH
17.
18.
go back to reference Katiyar, S.K., Chand, A.K.B., Saravana Kumar, G.: A new class of rational cubic spline fractal interpolation function and its constrained aspects. Appl. Math. Comput. 346, 319–335 (2019) Katiyar, S.K., Chand, A.K.B., Saravana Kumar, G.: A new class of rational cubic spline fractal interpolation function and its constrained aspects. Appl. Math. Comput. 346, 319–335 (2019)
19.
go back to reference Mandelbrot, B.: Fractals: Form, Chance and Dimension. W. H. Freeman, San Francisco (1977) Mandelbrot, B.: Fractals: Form, Chance and Dimension. W. H. Freeman, San Francisco (1977)
21.
go back to reference Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 24(2), 1–20 (2005)MATH Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 24(2), 1–20 (2005)MATH
22.
go back to reference Reddy, K.M.: Some aspects of fractal functions in geometric modelling. Ph.D. Thesis, IIT Madras (2018) Reddy, K.M.: Some aspects of fractal functions in geometric modelling. Ph.D. Thesis, IIT Madras (2018)
23.
go back to reference Sakai, M., Schmidt, J.W.: Positive interpolation with rational spline. BIT Numer. Math. 29, 140–147 (1989)CrossRefMATH Sakai, M., Schmidt, J.W.: Positive interpolation with rational spline. BIT Numer. Math. 29, 140–147 (1989)CrossRefMATH
24.
go back to reference Samuel, M., Tetenov, A., Vaulin, D.: Self-similar dendrites generated by polygonal systems in the plane. Sib. Élektron. Mat. Izv. 14, 737–751 (2017)MATH Samuel, M., Tetenov, A., Vaulin, D.: Self-similar dendrites generated by polygonal systems in the plane. Sib. Élektron. Mat. Izv. 14, 737–751 (2017)MATH
25.
go back to reference Schmidt, J., Heß, W.: Positive interpolation with rational quadratic splines. Computing 38, 261–267 (1987)CrossRefMATH Schmidt, J., Heß, W.: Positive interpolation with rational quadratic splines. Computing 38, 261–267 (1987)CrossRefMATH
26.
go back to reference Tetenov, A.V.: On self-similar Jordan arcs on a plane. Sib. Zh. Ind. Mat. 7(3), 148–155 (2004)MATH Tetenov, A.V.: On self-similar Jordan arcs on a plane. Sib. Zh. Ind. Mat. 7(3), 148–155 (2004)MATH
27.
go back to reference Tetenov, A.V.: Self-similar Jordan arcs and graph-directed systems of similarities. Siberian Math. J. 47(5), 940–949 (2006)CrossRefMATH Tetenov, A.V.: Self-similar Jordan arcs and graph-directed systems of similarities. Siberian Math. J. 47(5), 940–949 (2006)CrossRefMATH
28.
go back to reference Tetenov, A.V., Samuel, M., Vaulin, D.A.: On dendrites defined by polyhedral systems and their ramification points. Tr. Inst. Mat. Mekh. 23(4), 281–291 (2017) Tetenov, A.V., Samuel, M., Vaulin, D.A.: On dendrites defined by polyhedral systems and their ramification points. Tr. Inst. Mat. Mekh. 23(4), 281–291 (2017)
29.
go back to reference Viswanathan, P., Chand, A.K.B.: \(\alpha \)-fractal rational splines for constrained interpolation. Electron. Trans. Numer. Anal. 41, 420–442 (2014)MATH Viswanathan, P., Chand, A.K.B.: \(\alpha \)-fractal rational splines for constrained interpolation. Electron. Trans. Numer. Anal. 41, 420–442 (2014)MATH
30.
go back to reference Viswanathan, P., Chand, A.K.B., Navascués, M.A.: Fractal perturbation preserving fundamental shapes: bounds on the scale factors. J. Math. Anal. Appl. 419(2), 804–817 (2014)CrossRefMATH Viswanathan, P., Chand, A.K.B., Navascués, M.A.: Fractal perturbation preserving fundamental shapes: bounds on the scale factors. J. Math. Anal. Appl. 419(2), 804–817 (2014)CrossRefMATH
31.
go back to reference Viswanathan, P., Navascués, M.A., Chand, A.K.B.: Fractal polynomials and maps in approximation of continuous functions. Numer. Funct. Anal. Optim. 37(1), 106–127 (2016)CrossRefMATH Viswanathan, P., Navascués, M.A., Chand, A.K.B.: Fractal polynomials and maps in approximation of continuous functions. Numer. Funct. Anal. Optim. 37(1), 106–127 (2016)CrossRefMATH
32.
go back to reference Wang, H.Y., Shan, Y.J.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)CrossRefMATH Wang, H.Y., Shan, Y.J.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)CrossRefMATH
33.
go back to reference Zhu, Y.: \(C^2\) positivity-preserving rational interpolation splines in one and two dimensions. Appl. Math. Comput. 316, 186–204 (2018)MATH Zhu, Y.: \(C^2\) positivity-preserving rational interpolation splines in one and two dimensions. Appl. Math. Comput. 316, 186–204 (2018)MATH
Metadata
Title
Positivity Preserving Rational Quartic Spline Zipper Fractal Interpolation Functions
Authors
Vijay
A. K. B. Chand
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_37

Premium Partners