Skip to main content
Top

2013 | OriginalPaper | Chapter

4. Post-Translationally Modified Proteins: Glycosylation and Disulfide Bond Formation

Authors : Anthony Tsarbopoulos, Fotini N. Bazoti

Published in: Characterization of Protein Therapeutics using Mass Spectrometry

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Even though most medicines have historically been small molecules, many newly approved drugs over the last two decades have been derived from proteins. For the past few years, protein therapeutics have been enjoying the fastest growth within the global pharmaceutical industry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24(7):769–776 Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24(7):769–776
2.
go back to reference Aggarwal S (2007) What’s fueling the biotech engine? Nat Biotechnol 25(10):1097–1104 Aggarwal S (2007) What’s fueling the biotech engine? Nat Biotechnol 25(10):1097–1104
3.
go back to reference Roach P, Woodworth JR (2002) Clinical pharmacokinetics and pharmacodynamics of insulin lispro mixtures. Clin Pharmacokinet 41:1043–1057 Roach P, Woodworth JR (2002) Clinical pharmacokinetics and pharmacodynamics of insulin lispro mixtures. Clin Pharmacokinet 41:1043–1057
4.
go back to reference Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720 Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720
5.
go back to reference Collins MO, Yu L, Choudhary JS (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics 7:2751–2768 Collins MO, Yu L, Choudhary JS (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics 7:2751–2768
6.
go back to reference Wedemeyer WJ, Welker E, Narayan M et al (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216 Wedemeyer WJ, Welker E, Narayan M et al (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216
7.
go back to reference Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82:111–121 Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82:111–121
8.
go back to reference Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127 Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127
9.
go back to reference Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127–E130 Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127–E130
10.
go back to reference Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252 Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252
11.
go back to reference Li H, d’Anjou M (2009) Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol 20:678–684 Li H, d’Anjou M (2009) Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol 20:678–684
12.
go back to reference CPMP/ICH harmonised tripartite guideline Q6B (1999) Specifications: test procedures and acceptance criteria for biotechnological/biological products. March 1999 and EMA guideline (2010) requirements for quality documentation concerning biological investigational medicinal products in clinical trials. February 2010 CPMP/ICH harmonised tripartite guideline Q6B (1999) Specifications: test procedures and acceptance criteria for biotechnological/biological products. March 1999 and EMA guideline (2010) requirements for quality documentation concerning biological investigational medicinal products in clinical trials. February 2010
13.
go back to reference Whitehouse CM, Dreyer RN, Yamashita M et al (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679 Whitehouse CM, Dreyer RN, Yamashita M et al (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679
14.
go back to reference Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71 Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71
15.
go back to reference Smith RD, Udseth H (1988) Capillary zone electrophoresis-MS. Nature 331:639–640 Smith RD, Udseth H (1988) Capillary zone electrophoresis-MS. Nature 331:639–640
16.
go back to reference Kelly JF, Locke SJ, Ramaley L et al (1996) Development of electrophoretic conditions for the characterization of protein glycoforms by capillary electrophoresis-electrospray mass spectrometry. J Chromatogr A 720:409–427 Kelly JF, Locke SJ, Ramaley L et al (1996) Development of electrophoretic conditions for the characterization of protein glycoforms by capillary electrophoresis-electrospray mass spectrometry. J Chromatogr A 720:409–427
17.
go back to reference Karas M, Bachmann D, Bahr U et al (1987) Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int J Mass Spectrom Ion Process 78:53–68 Karas M, Bachmann D, Bahr U et al (1987) Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int J Mass Spectrom Ion Process 78:53–68
18.
go back to reference Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301 Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301
19.
go back to reference Hancock WS, Wu SL, Shieh P (2002) The challenges of developing a sound proteomics strategy. Proteomics 2:352–359 Hancock WS, Wu SL, Shieh P (2002) The challenges of developing a sound proteomics strategy. Proteomics 2:352–359
20.
go back to reference Larsen MR, Trelle MB, Thingholm TE et al (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40:790–798 Larsen MR, Trelle MB, Thingholm TE et al (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40:790–798
21.
go back to reference Covey T, Shushan B, Bonner R, Schröder W, Hucho F (1991) Methods in protein sequence analysis. In: Jörnvall H, Höög JO, Gustavsson AM (eds) LC/MS and LC/MS/MS screening of the sites of posttranslational modification in proteins. Birkhäuser Press, Basel Covey T, Shushan B, Bonner R, Schröder W, Hucho F (1991) Methods in protein sequence analysis. In: Jörnvall H, Höög JO, Gustavsson AM (eds) LC/MS and LC/MS/MS screening of the sites of posttranslational modification in proteins. Birkhäuser Press, Basel
22.
go back to reference Dell A, Morris HR (2001) Glycoprotein structure determination by mass spectrometry. Science 291:2351–2356 Dell A, Morris HR (2001) Glycoprotein structure determination by mass spectrometry. Science 291:2351–2356
23.
go back to reference Bateman RH, Carruthers R, Hoye JB et al (2002) A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 13:792–803 Bateman RH, Carruthers R, Hoye JB et al (2002) A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 13:792–803
24.
go back to reference Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266 Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266
25.
go back to reference Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533 Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533
26.
go back to reference Wu SL, Jiang H, Lu Q et al (2009) Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. Anal Chem 81:112–122 Wu SL, Jiang H, Lu Q et al (2009) Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. Anal Chem 81:112–122
27.
go back to reference Wang D, Hincapie M, Rejtar T et al (2011) Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. Anal Chem 83(6):2029–2037 Wang D, Hincapie M, Rejtar T et al (2011) Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. Anal Chem 83(6):2029–2037
28.
go back to reference Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8 Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8
29.
go back to reference Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptides bonds. Glycobiology 12:43R–56R Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptides bonds. Glycobiology 12:43R–56R
30.
go back to reference Schachter H (2001) The clinical relevance of glycobiology. J Clin Invest 108:1579–1582 Schachter H (2001) The clinical relevance of glycobiology. J Clin Invest 108:1579–1582
31.
go back to reference Dwek MV, Brooks SA (2004) Harnessing changes in cellular glycosylation in new cancer treatment strategies. Curr Cancer Drug Targets 4:425–442 Dwek MV, Brooks SA (2004) Harnessing changes in cellular glycosylation in new cancer treatment strategies. Curr Cancer Drug Targets 4:425–442
32.
go back to reference Wuhrer M (2007) Glycosylation profiling in clinical proteomics: heading for glycan biomarkers. Expert Rev Proteomics 4:135–136 Wuhrer M (2007) Glycosylation profiling in clinical proteomics: heading for glycan biomarkers. Expert Rev Proteomics 4:135–136
33.
go back to reference Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488 Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488
34.
go back to reference Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542 Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542
35.
go back to reference An HJ, Kronewitter SR, de Leoz ML et al (2009) Glycomics and disease markers. Curr Opin Chem Biol 13:601–607 An HJ, Kronewitter SR, de Leoz ML et al (2009) Glycomics and disease markers. Curr Opin Chem Biol 13:601–607
36.
go back to reference Niwa T (2006) Mass spectrometry for the study of protein glycation in disease. Mass Spectrom Rev 25:713–723 Niwa T (2006) Mass spectrometry for the study of protein glycation in disease. Mass Spectrom Rev 25:713–723
37.
go back to reference Morelle W, Canis K, Chirat F et al (2006) The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6:3993–4015 Morelle W, Canis K, Chirat F et al (2006) The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6:3993–4015
38.
go back to reference Bennett CS, Dean SM, Payne RJ et al (2008) Sugar-assisted glycopeptide ligation with complex oligosaccharides: scope and limitations. J Am Chem Soc 130:11945–11952 Bennett CS, Dean SM, Payne RJ et al (2008) Sugar-assisted glycopeptide ligation with complex oligosaccharides: scope and limitations. J Am Chem Soc 130:11945–11952
39.
go back to reference Novotny MV, Mechref Y (2005) New hyphenated methodologies in high sensitivity glycoprotein analysis. J Sep Sci 28:1956–1968 Novotny MV, Mechref Y (2005) New hyphenated methodologies in high sensitivity glycoprotein analysis. J Sep Sci 28:1956–1968
40.
go back to reference Wuhrer M, Deedler AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B 825:124–133 Wuhrer M, Deedler AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B 825:124–133
41.
go back to reference Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 1764:1853–1869 Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 1764:1853–1869
42.
go back to reference Mariño K, Bones J, Kattla JJ et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol: 713–723 Mariño K, Bones J, Kattla JJ et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol: 713–723
43.
go back to reference North SJ, Hitchen PG, Haslam SM et al (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19:498–506 North SJ, Hitchen PG, Haslam SM et al (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19:498–506
44.
go back to reference Axford J (2001) The impact of glycobiology on medicine. Trends Immunol 22:237–239 Axford J (2001) The impact of glycobiology on medicine. Trends Immunol 22:237–239
45.
go back to reference Mortz E, Sareneva T, Haebel S et al (1996) Mass spectrometric characterization of glycosylated interferon-gamma variants separated by gel electrophoresis. Electrophoresis 17:925–931 Mortz E, Sareneva T, Haebel S et al (1996) Mass spectrometric characterization of glycosylated interferon-gamma variants separated by gel electrophoresis. Electrophoresis 17:925–931
46.
go back to reference Nawarak J, Phutrakul S, Chen ST (2004) Analysis of lectin-bound glycoproteins in snake venom from the elapidae and viperidae families. J Proteom Res 3:383–392 Nawarak J, Phutrakul S, Chen ST (2004) Analysis of lectin-bound glycoproteins in snake venom from the elapidae and viperidae families. J Proteom Res 3:383–392
47.
go back to reference Mechref Y, Novotny MV (2002) Structural investigations of glycoconjugates at high sensitivity. Chem Rev 102:321–369 Mechref Y, Novotny MV (2002) Structural investigations of glycoconjugates at high sensitivity. Chem Rev 102:321–369
48.
go back to reference Ramdani B, Nuyens V, Codden T et al (2003) Analyte comigrating with trisialotransferrin during capillary zone electrophoresis of sera from patients with cancer. Clin Chem 49:1854–1864 Ramdani B, Nuyens V, Codden T et al (2003) Analyte comigrating with trisialotransferrin during capillary zone electrophoresis of sera from patients with cancer. Clin Chem 49:1854–1864
49.
go back to reference Smith RD, Loo JA, Edmonds CG et al (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899 Smith RD, Loo JA, Edmonds CG et al (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899
50.
go back to reference Tsarbopoulos A, Pramanik BN, Nagabhushan TL et al (1995) Structural analysis of the CHO-derived interleukin-4 by liquid-chromatography/electrospray ionization mass spectrometry. J Mass Spectrom 30:1752–1763 Tsarbopoulos A, Pramanik BN, Nagabhushan TL et al (1995) Structural analysis of the CHO-derived interleukin-4 by liquid-chromatography/electrospray ionization mass spectrometry. J Mass Spectrom 30:1752–1763
51.
go back to reference Tsarbopoulos A, Bahr U, Karas M, Pramanik BN (2002) Structural analysis of glycoproteins by electrospray ionization mass spectrometry. In: Pramanik BN, Ganguly AK, Gross ML (eds) Applied electrospray mass spectrometry. Marcel Dekker, New York Tsarbopoulos A, Bahr U, Karas M, Pramanik BN (2002) Structural analysis of glycoproteins by electrospray ionization mass spectrometry. In: Pramanik BN, Ganguly AK, Gross ML (eds) Applied electrospray mass spectrometry. Marcel Dekker, New York
52.
go back to reference Duffin KL, Welply JK, Huang E et al (1992) Characterization of N-linked oligosaccharides by electrospray and tandem mass spectrometry. Anal Chem 64:1440–1448 Duffin KL, Welply JK, Huang E et al (1992) Characterization of N-linked oligosaccharides by electrospray and tandem mass spectrometry. Anal Chem 64:1440–1448
53.
go back to reference Rajan N, Tsarbopoulos A, Kumarasamy R et al (1995) Characterization of recombinant human interleukin-4 receptor from CHO cells: Role of N-linked oligosaccharides. Biochem Biophys Res Commun 206:694–702 Rajan N, Tsarbopoulos A, Kumarasamy R et al (1995) Characterization of recombinant human interleukin-4 receptor from CHO cells: Role of N-linked oligosaccharides. Biochem Biophys Res Commun 206:694–702
54.
go back to reference Rush RS, Derby PL, Smith DM et al (1995) Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem 67:1442–1452 Rush RS, Derby PL, Smith DM et al (1995) Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem 67:1442–1452
55.
go back to reference Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8 Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8
56.
go back to reference Verentchikov AN, Ens W, Standing KG (1994) Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Anal Chem 66:99–107 Verentchikov AN, Ens W, Standing KG (1994) Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Anal Chem 66:99–107
57.
go back to reference Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162 Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162
58.
go back to reference Olivova P, Chen W, Chakraborty AB et al (2008) Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:29–40 Olivova P, Chen W, Chakraborty AB et al (2008) Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:29–40
59.
go back to reference Benesch JLP, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Current Opin Struct Biol 16:245–251 Benesch JLP, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Current Opin Struct Biol 16:245–251
60.
go back to reference Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577–592 Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577–592
61.
go back to reference Carter P, Presta L, Gorman CM et al (1992) Humanization of an Anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289 Carter P, Presta L, Gorman CM et al (1992) Humanization of an Anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289
62.
go back to reference Damen CWN, Chen W, Chakraborty AB et al (2009) Electrospray ionization quadrupole ion-Mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-Glycosylation profile of the therapeutic monoclonal antibody Trastuzumab. J Amer Soc Mass Spectrom 20:2021–2033 Damen CWN, Chen W, Chakraborty AB et al (2009) Electrospray ionization quadrupole ion-Mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-Glycosylation profile of the therapeutic monoclonal antibody Trastuzumab. J Amer Soc Mass Spectrom 20:2021–2033
63.
go back to reference Dube S, Fisher JW, Powell JS (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion and biological function. J Biol Chem 263:17516–17521 Dube S, Fisher JW, Powell JS (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion and biological function. J Biol Chem 263:17516–17521
64.
go back to reference Delorme E, Lorenzini T, Giffin J et al (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31:9871–9876 Delorme E, Lorenzini T, Giffin J et al (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31:9871–9876
65.
go back to reference Ploug M, Rahbek-Nielsen H, Nielsen PF et al (1998) Glycosylation profile of a recombinant urokinase-type plasminogen activator receptor expressed in Chinese hamster ovary cells. J Biol Chem 273(22):13933–13943 Ploug M, Rahbek-Nielsen H, Nielsen PF et al (1998) Glycosylation profile of a recombinant urokinase-type plasminogen activator receptor expressed in Chinese hamster ovary cells. J Biol Chem 273(22):13933–13943
66.
go back to reference Tsarbopoulos A, Prongay A, Baldwin S et al (1996) Mass spectrometric analysis of the Sf9 cell-derived interleukin-5 Receptor. In: Proceedings of the 44th ASMS conference on mass spectrometry and allied topics, Portland: 12–16 May Tsarbopoulos A, Prongay A, Baldwin S et al (1996) Mass spectrometric analysis of the Sf9 cell-derived interleukin-5 Receptor. In: Proceedings of the 44th ASMS conference on mass spectrometry and allied topics, Portland: 12–16 May
67.
go back to reference Karas M, Bahr U, Strupat K et al (1995) Matrix dependence of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal Chem 67:675–679 Karas M, Bahr U, Strupat K et al (1995) Matrix dependence of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal Chem 67:675–679
68.
go back to reference Giménez E, Benavente F, Barbosa J et al (2007) Towards a reliable molecular mass determination of intact glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:2555–2563 Giménez E, Benavente F, Barbosa J et al (2007) Towards a reliable molecular mass determination of intact glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:2555–2563
69.
go back to reference Tsarbopoulos A, Pramanik BN, Karas M et al (1995) Factors affecting the choice of matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of glycoproteins. J Mass Spectrom: S207–S209 Tsarbopoulos A, Pramanik BN, Karas M et al (1995) Factors affecting the choice of matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of glycoproteins. J Mass Spectrom: S207–S209
70.
go back to reference Liu CL, Bowers LD (1997) Mass spectrometric characterization of the β-subunit of human chorionic gonadotropin. J Mass Spectrom 32:33–42 Liu CL, Bowers LD (1997) Mass spectrometric characterization of the β-subunit of human chorionic gonadotropin. J Mass Spectrom 32:33–42
71.
go back to reference Neusüb C, Demelbauer U, Pelzing M (2005) Glycoform characterization of intact erythropoietin by capillary electrophoresis-electrospray-time of flight-mass spectrometry. Electrophoresis 26:1442–1450 Neusüb C, Demelbauer U, Pelzing M (2005) Glycoform characterization of intact erythropoietin by capillary electrophoresis-electrospray-time of flight-mass spectrometry. Electrophoresis 26:1442–1450
72.
go back to reference Demelbauer UM, Plematl A, Kremser L et al (2004) Characterization of glyco isoforms in plasma-derived human antithrombin by on-line capillary zone electrophoresis-electrospray ionization-quadrupole ion trap-mass spectrometry of the intact glycoproteins. Electrophoresis 25:2026–2032 Demelbauer UM, Plematl A, Kremser L et al (2004) Characterization of glyco isoforms in plasma-derived human antithrombin by on-line capillary zone electrophoresis-electrospray ionization-quadrupole ion trap-mass spectrometry of the intact glycoproteins. Electrophoresis 25:2026–2032
73.
go back to reference Balaguer E, Demelbauer U, Pelzing M et al (2006) Glycoform characterization of erythropoietin combining glycan and intact protein analysis by capillary electrophoresis–electrospray–time-of-flight mass spectrometry. Electrophoresis 27:2638–2650 Balaguer E, Demelbauer U, Pelzing M et al (2006) Glycoform characterization of erythropoietin combining glycan and intact protein analysis by capillary electrophoresis–electrospray–time-of-flight mass spectrometry. Electrophoresis 27:2638–2650
74.
go back to reference Balaguer E, Neususs C (2006) Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem 78:5384–5393 Balaguer E, Neususs C (2006) Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem 78:5384–5393
75.
go back to reference Thakur D, Rejtar T, Karger BL et al (2009) Profiling the glycoforms of the intact α subunit of recombinant human chorionic gonadotropin by high-resolution capillary electrophoresis-mass spectrometry. Anal Chem 81:8900–8907 Thakur D, Rejtar T, Karger BL et al (2009) Profiling the glycoforms of the intact α subunit of recombinant human chorionic gonadotropin by high-resolution capillary electrophoresis-mass spectrometry. Anal Chem 81:8900–8907
76.
go back to reference Sanz-Nebot V, Balaguer E, Benavente F et al (2007) Characterization of transferrin glycoforms in human serum by CE-UV and CE-ESI-MS. Electrophoresis 28:1949–1957 Sanz-Nebot V, Balaguer E, Benavente F et al (2007) Characterization of transferrin glycoforms in human serum by CE-UV and CE-ESI-MS. Electrophoresis 28:1949–1957
77.
go back to reference Hang HC, Bertozzi CR (2005) The chemistry and biology of mucin-type Olinked glycosylation. Bioorg Med Chem 13:5021–5034 Hang HC, Bertozzi CR (2005) The chemistry and biology of mucin-type Olinked glycosylation. Bioorg Med Chem 13:5021–5034
78.
go back to reference Wopereis S, Lefeber DJ, Morava E et al (2006) Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 52:574–600 Wopereis S, Lefeber DJ, Morava E et al (2006) Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 52:574–600
79.
go back to reference Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664 Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664
80.
go back to reference Vance BA, Wu W, Ribaudo RK et al (1997) Multiple dimeric forms of human CD69 result from differential addition of Nglycans to typical (Asn–X–Ser/Thr) and atypical (Asn–X–Cys) glycosylation motifs. J Biol Chem 272:23117–23122 Vance BA, Wu W, Ribaudo RK et al (1997) Multiple dimeric forms of human CD69 result from differential addition of Nglycans to typical (Asn–X–Ser/Thr) and atypical (Asn–X–Cys) glycosylation motifs. J Biol Chem 272:23117–23122
81.
go back to reference Kelleher NL, Lin H, Valaskovic G et al (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812 Kelleher NL, Lin H, Valaskovic G et al (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812
82.
go back to reference Kelleher NL (2004) Top-down proteomics. Anal Chem 76:196A–203A Kelleher NL (2004) Top-down proteomics. Anal Chem 76:196A–203A
83.
go back to reference Reid GE, McLuckey SA (2002) ‘Top down’ protein characterization via tandem mass spectrometry. J Mass Spectrom 37:663–675 Reid GE, McLuckey SA (2002) ‘Top down’ protein characterization via tandem mass spectrometry. J Mass Spectrom 37:663–675
84.
go back to reference Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821 Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821
85.
go back to reference Ling V, Guzzetta AW, Canova-Davis E et al (1991) Characterization of the tryptic map of recombinant DNA derived tissue plasminogen activator by high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 63:2909–2915 Ling V, Guzzetta AW, Canova-Davis E et al (1991) Characterization of the tryptic map of recombinant DNA derived tissue plasminogen activator by high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 63:2909–2915
86.
go back to reference Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884 Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884
87.
go back to reference Amon S, Alina D, Zamfir AD et al (2008) Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 29:2485–2507 Amon S, Alina D, Zamfir AD et al (2008) Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 29:2485–2507
88.
go back to reference Alving K, Körner R, Paulsen H et al (1998) Nanospray-ESI low-energy CID and MALDI post-source decay for determination of O-glycosylation sites in MUC4 peptides. J Mass Spectrom 33:1124–1133 Alving K, Körner R, Paulsen H et al (1998) Nanospray-ESI low-energy CID and MALDI post-source decay for determination of O-glycosylation sites in MUC4 peptides. J Mass Spectrom 33:1124–1133
89.
go back to reference Hunt DF, Shabanowitz J, Yates JR et al (1986) Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins. Proc Natl Acad Sci USA 83:6233–6237 Hunt DF, Shabanowitz J, Yates JR et al (1986) Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins. Proc Natl Acad Sci USA 83:6233–6237
90.
go back to reference Mechref Y, Madera M, Novotny MV (2009) Assigning glycosylation sites and microheterogeneities in glycoproteins by liquid chromatography/tandem mass spectrometry. Methods Mol Biol 492:161–180 Mechref Y, Madera M, Novotny MV (2009) Assigning glycosylation sites and microheterogeneities in glycoproteins by liquid chromatography/tandem mass spectrometry. Methods Mol Biol 492:161–180
91.
go back to reference Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044 Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044
92.
go back to reference Temporini C, Calleri E, Massolini G et al (2008) Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass Spectrom Rev 27:207–236 Temporini C, Calleri E, Massolini G et al (2008) Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass Spectrom Rev 27:207–236
93.
go back to reference Drake RR, Schwegler EE, Malik G et al (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5:1957–1967 Drake RR, Schwegler EE, Malik G et al (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5:1957–1967
94.
go back to reference Alvarez-Manilla G, Atwood J III, Guo Y et al (2006) Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5:701–708 Alvarez-Manilla G, Atwood J III, Guo Y et al (2006) Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5:701–708
95.
go back to reference Tajiri M, Yoshida S, Wada Y (2005) Differential analysis of site-specific glycans on plasma and cellular fibronectins: Application of a hydrophilic affinity method for glycopeptides enrichment. Glycobiology 15(12):1332–1340 Tajiri M, Yoshida S, Wada Y (2005) Differential analysis of site-specific glycans on plasma and cellular fibronectins: Application of a hydrophilic affinity method for glycopeptides enrichment. Glycobiology 15(12):1332–1340
96.
go back to reference Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565 Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565
97.
go back to reference Hägglund P, Bunkenborg J, Elortza F et al (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566 Hägglund P, Bunkenborg J, Elortza F et al (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566
98.
go back to reference Liu X, Li X, Chan K et al (2007) One- pot methylation in glycomics application: esterification of sialic acids and permanent charge construction. Anal Chem 79:3894–3900 Liu X, Li X, Chan K et al (2007) One- pot methylation in glycomics application: esterification of sialic acids and permanent charge construction. Anal Chem 79:3894–3900
99.
go back to reference Larsen MR, Højrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119 Larsen MR, Højrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119
100.
go back to reference Brittain SM, Ficarro SB, Brock A et al (2005) Enrichment analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat Biotechnol 23:463–468 Brittain SM, Ficarro SB, Brock A et al (2005) Enrichment analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat Biotechnol 23:463–468
101.
go back to reference Mirzaei H, Regnier F (2005) Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry. Anal Chem 77:2386–2392 Mirzaei H, Regnier F (2005) Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry. Anal Chem 77:2386–2392
102.
go back to reference Zhang W, Zhou G, Zhao Y et al (2003) Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis 24:2855–2863 Zhang W, Zhou G, Zhao Y et al (2003) Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis 24:2855–2863
103.
go back to reference Zhang H, Yi EC, Li XJ (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 4:144–155 Zhang H, Yi EC, Li XJ (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 4:144–155
104.
go back to reference Zhao Y, Zhang W, Kho Y et al (2004) Proteomic analysis of integral plasma membrane proteins. Anal Chem 76:1817–1823 Zhao Y, Zhang W, Kho Y et al (2004) Proteomic analysis of integral plasma membrane proteins. Anal Chem 76:1817–1823
105.
go back to reference Bailey MJ, Hooker AD, Adams CS et al (2005) A platform for high-throughput molecular characterization of recombinant monoclonal antibodies. J Chromatogr B 826:177–187 Bailey MJ, Hooker AD, Adams CS et al (2005) A platform for high-throughput molecular characterization of recombinant monoclonal antibodies. J Chromatogr B 826:177–187
106.
go back to reference Bundy JL, Fenselau C (2001) Lectin and carbohydrate affinity surfaces for mass spectrometric analysis of microorganisms. Anal Chem 73:751–757 Bundy JL, Fenselau C (2001) Lectin and carbohydrate affinity surfaces for mass spectrometric analysis of microorganisms. Anal Chem 73:751–757
107.
go back to reference Xiong L, Andrews D, Regnier F (2003) Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J Proteome Res 2:618–625 Xiong L, Andrews D, Regnier F (2003) Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J Proteome Res 2:618–625
108.
go back to reference Madera M, Mechref Y, Novotny MV (2005) Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 77:4081–4090 Madera M, Mechref Y, Novotny MV (2005) Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 77:4081–4090
109.
go back to reference Bedair M, El Rassi Z (2005) Affinity chromatography with monolithic capillary columns II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography. J Chromatogr A 1079:236–245 Bedair M, El Rassi Z (2005) Affinity chromatography with monolithic capillary columns II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography. J Chromatogr A 1079:236–245
110.
go back to reference Okanda FM, El Rassi Z (2006) Affinity chromatography with monolithic capillary columns for glycomics/proteomics: 1. polymethacrylate monoliths with immobilized lectins for glycoprotein separation by affinity capillary electrochromatography and affinity nano-liquid chromatography in either a single column or columns coupled in series. Electrophoresis 27:1020–1030 Okanda FM, El Rassi Z (2006) Affinity chromatography with monolithic capillary columns for glycomics/proteomics: 1. polymethacrylate monoliths with immobilized lectins for glycoprotein separation by affinity capillary electrochromatography and affinity nano-liquid chromatography in either a single column or columns coupled in series. Electrophoresis 27:1020–1030
111.
go back to reference Mao X, Luo Y, Dai Z et al (2004) Integrated lectin affinity microfluidic chip for glycoform separation. Anal Chem 76:6941–6947 Mao X, Luo Y, Dai Z et al (2004) Integrated lectin affinity microfluidic chip for glycoform separation. Anal Chem 76:6941–6947
112.
go back to reference Budnik BA, Lee RS, Steen JA (2006) Review Global methods for protein glycosylation analysis by mass spectrometry. Biochim Biophys Acta 1764:1870–1880 Budnik BA, Lee RS, Steen JA (2006) Review Global methods for protein glycosylation analysis by mass spectrometry. Biochim Biophys Acta 1764:1870–1880
113.
go back to reference Wang L, Li F, Sun W et al (2006) Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 5:560–562 Wang L, Li F, Sun W et al (2006) Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 5:560–562
114.
go back to reference Kaji H, Saito H, Yamauchi Y et al (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672 Kaji H, Saito H, Yamauchi Y et al (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672
115.
go back to reference Madera M, Mechref Y, Klouckova I et al (2007) High-sensitivity profiling of glycoproteins from human blood serum through multiple- lectin affinity chromatography and liquid chromatography/tandem mass spectrometry. J Chromatogr B 845:121–137 Madera M, Mechref Y, Klouckova I et al (2007) High-sensitivity profiling of glycoproteins from human blood serum through multiple- lectin affinity chromatography and liquid chromatography/tandem mass spectrometry. J Chromatogr B 845:121–137
116.
go back to reference Cummings RD, Kornfeld S (1984) The distribution of repeating [Gal beta 1, 4GlcNAc beta 1, 3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J Biol Chem 259:6253–6260 Cummings RD, Kornfeld S (1984) The distribution of repeating [Gal beta 1, 4GlcNAc beta 1, 3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J Biol Chem 259:6253–6260
117.
go back to reference Yang Z, Hancock WS (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 1053:79–88 Yang Z, Hancock WS (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 1053:79–88
118.
go back to reference Qiu R, Regnier FE (2005) Use of multidimensional lectin affinity chromatography in differential glycoroteomics. Anal Chem 77:2802–2809 Qiu R, Regnier FE (2005) Use of multidimensional lectin affinity chromatography in differential glycoroteomics. Anal Chem 77:2802–2809
119.
go back to reference Sumi S, Arai K, Kitahara S et al (1999) Serial lectin affinity chromatography demonstrates altered asparagine-linked sugar-chain structures of prostate-specific antigen in human prostate carcinoma. J Chromatogr B 727:9–14 Sumi S, Arai K, Kitahara S et al (1999) Serial lectin affinity chromatography demonstrates altered asparagine-linked sugar-chain structures of prostate-specific antigen in human prostate carcinoma. J Chromatogr B 727:9–14
120.
go back to reference Xiong L, Regnier FE (2002) Use of a lectin affinity selector in the search for unusual glycosylation in proteomics. J Chromatogr, B: Anal Technol Biomed Life Sci 782:405–418 Xiong L, Regnier FE (2002) Use of a lectin affinity selector in the search for unusual glycosylation in proteomics. J Chromatogr, B: Anal Technol Biomed Life Sci 782:405–418
121.
go back to reference Yang Z, Hancock WS (2005) Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J Chromatogr A 1070:57–64 Yang Z, Hancock WS (2005) Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J Chromatogr A 1070:57–64
122.
go back to reference Wang Y, Wu S, Hancock WS (2006) Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap Fourier transform mass spectrometry. Glycobiology 16:514–523 Wang Y, Wu S, Hancock WS (2006) Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap Fourier transform mass spectrometry. Glycobiology 16:514–523
123.
go back to reference Yue GE, Roper MG, Balchunas C et al (2006) Protein digestion and phosphopeptides enrichment on glass microchip. Anal Chim Acta 564:116–122 Yue GE, Roper MG, Balchunas C et al (2006) Protein digestion and phosphopeptides enrichment on glass microchip. Anal Chim Acta 564:116–122
124.
go back to reference Madera M, Mechref Y, Klouckova I et al (2006) Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry. J Proteome Res 5:2348–2363 Madera M, Mechref Y, Klouckova I et al (2006) Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry. J Proteome Res 5:2348–2363
125.
go back to reference Guzman NA, Phillips TM (2005) Immunoaffinity CE for proteomics studies. Anal Chem 77:60A–67A Guzman NA, Phillips TM (2005) Immunoaffinity CE for proteomics studies. Anal Chem 77:60A–67A
126.
go back to reference Benavente F, Hernández E, Guzman NA et al (2007) Determination of human erythropoietin by on-line immunoaffinity capillary electrophoresis: a preliminary report. Anal Bioanal Chem 387:2633–2639 Benavente F, Hernández E, Guzman NA et al (2007) Determination of human erythropoietin by on-line immunoaffinity capillary electrophoresis: a preliminary report. Anal Bioanal Chem 387:2633–2639
127.
go back to reference An HJ, Peavy TR, Hedrick JL et al (2003) Determination of N- glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75:5628–5637 An HJ, Peavy TR, Hedrick JL et al (2003) Determination of N- glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75:5628–5637
128.
go back to reference Temporini C, Perani E, Calleri E et al (2007) Pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MSn. Anal Chem 79:355–363 Temporini C, Perani E, Calleri E et al (2007) Pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MSn. Anal Chem 79:355–363
129.
go back to reference Jebanathirajah J, Steen H, Roepstorff P (2003) Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J Am Soc Mass Spectrom 14:777–784 Jebanathirajah J, Steen H, Roepstorff P (2003) Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J Am Soc Mass Spectrom 14:777–784
130.
go back to reference Zhang H, Li XJ, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666 Zhang H, Li XJ, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666
131.
go back to reference Khidekel N, Arndt S, Lamarre-Vincent N et al (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163 Khidekel N, Arndt S, Lamarre-Vincent N et al (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163
132.
go back to reference Sprung R, Nandi A, Chen Y et al (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4:950–957 Sprung R, Nandi A, Chen Y et al (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4:950–957
133.
go back to reference Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010 Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010
134.
go back to reference Khidekel N, Ficarro SB, Peters EC et al (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 101:13132–13137 Khidekel N, Ficarro SB, Peters EC et al (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 101:13132–13137
135.
go back to reference Lamarre-Vincent N, Hsieh-Wilson LC (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J Am Chem Soc 125:6612–6613 Lamarre-Vincent N, Hsieh-Wilson LC (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J Am Chem Soc 125:6612–6613
136.
go back to reference Zhang Y, Wolf-Yadlin A, Ross PL et al (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250 Zhang Y, Wolf-Yadlin A, Ross PL et al (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250
137.
go back to reference Vocadlo DJ, Hang HC, Kim EJ et al (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci USA 100:9116–9121 Vocadlo DJ, Hang HC, Kim EJ et al (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci USA 100:9116–9121
138.
go back to reference Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–877 Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–877
139.
go back to reference Kho Y, Kim SC, Jiang C et al (2004) A tagging-via- substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci USA 101:12479–12484 Kho Y, Kim SC, Jiang C et al (2004) A tagging-via- substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci USA 101:12479–12484
140.
go back to reference Wells L, Vosseller K, Cole RN et al (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804 Wells L, Vosseller K, Cole RN et al (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804
141.
go back to reference Vosseller K, Hansen KC, Chalkley RJ et al (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5:388–398 Vosseller K, Hansen KC, Chalkley RJ et al (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5:388–398
142.
go back to reference Wuhrer M, Catalina MI, Deelder AM et al (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128 Wuhrer M, Catalina MI, Deelder AM et al (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128
143.
go back to reference Carr SA, Hemling ME, Bean MF et al (1991) Integration of mass spectrometry in analytical biotechnology. Anal Chem 63:2802–2824 Carr SA, Hemling ME, Bean MF et al (1991) Integration of mass spectrometry in analytical biotechnology. Anal Chem 63:2802–2824
144.
go back to reference Burlingame AL (1996) Characterization of protein glycosylation by mass spectrometry. Curr Opin Biotechnol 7:4–10 Burlingame AL (1996) Characterization of protein glycosylation by mass spectrometry. Curr Opin Biotechnol 7:4–10
145.
go back to reference Carr SA, Roberts GD (1986) Carbohydrate mapping by mass spectrometry: a novel method for identifying attachment sites of Asn-linked sugars in glycoproteins. Anal Biochem 157:396–406 Carr SA, Roberts GD (1986) Carbohydrate mapping by mass spectrometry: a novel method for identifying attachment sites of Asn-linked sugars in glycoproteins. Anal Biochem 157:396–406
146.
go back to reference Küster B, Mann M (1999) 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal Chem 71:1431–1440 Küster B, Mann M (1999) 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal Chem 71:1431–1440
147.
go back to reference Leonard CK, Spellman MW, Riddle L et al (1990) Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265:10373–10382 Leonard CK, Spellman MW, Riddle L et al (1990) Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265:10373–10382
148.
go back to reference Carr SA, Roberts GD, Jurewicz A et al (1998) Structural fingerprinting of Asn-linked carbohydrates from specific attachment sites in glycoproteins by mass spectrometry: application to tissue plasminogen activator. Biochimie 70:1445–1454 Carr SA, Roberts GD, Jurewicz A et al (1998) Structural fingerprinting of Asn-linked carbohydrates from specific attachment sites in glycoproteins by mass spectrometry: application to tissue plasminogen activator. Biochimie 70:1445–1454
149.
go back to reference Guzzetta AW, Basa LJ, Hancock WS et al (1993) Identification of carbohydrate structures in glycoprotein peptide maps by the use of LC/MS with selected ion extraction with special reference to tissue plasminogen activator and a glycosylation variant produced by site directed mutagenesis. Anal Chem 65:2953–2962 Guzzetta AW, Basa LJ, Hancock WS et al (1993) Identification of carbohydrate structures in glycoprotein peptide maps by the use of LC/MS with selected ion extraction with special reference to tissue plasminogen activator and a glycosylation variant produced by site directed mutagenesis. Anal Chem 65:2953–2962
150.
go back to reference Jiang H, Wu SL, Karger BL et al (2010) Characterization of the glycosylation occupancy and the active site in the follow-on protein therapeutic: TNK-tissue plasminogen activator. Anal Chem 82:6154–6162 Jiang H, Wu SL, Karger BL et al (2010) Characterization of the glycosylation occupancy and the active site in the follow-on protein therapeutic: TNK-tissue plasminogen activator. Anal Chem 82:6154–6162
151.
go back to reference Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409 Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409
152.
go back to reference Carr SA, Huddleston MJ, Bean MF (1993) Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2:183–196 Carr SA, Huddleston MJ, Bean MF (1993) Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2:183–196
153.
go back to reference Harvey DJ, Bateman RH, Bordoli RS et al (2000) Ionization and fragmentation of complex glycans with a quadrupole time-of-flight mass spectrometer fitted with a matrix-assisted laser desorption/ionization ion source. Rapid Commun Mass Spectrom 14:2135–2142 Harvey DJ, Bateman RH, Bordoli RS et al (2000) Ionization and fragmentation of complex glycans with a quadrupole time-of-flight mass spectrometer fitted with a matrix-assisted laser desorption/ionization ion source. Rapid Commun Mass Spectrom 14:2135–2142
154.
go back to reference Borisov OV, Field M, Ling VT et al (2009) Characterization of Oligosaccharides in recombinant tissue plasminogen activator produced in Chinese hamster ovary cells: Two decades of analytical technology development. Anal Chem 81:9744–9754 Borisov OV, Field M, Ling VT et al (2009) Characterization of Oligosaccharides in recombinant tissue plasminogen activator produced in Chinese hamster ovary cells: Two decades of analytical technology development. Anal Chem 81:9744–9754
155.
go back to reference Demelbauer UM, Zehl M, Plematl A et al (2004) Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun Mass Spectrom 18(14):1575–1582 Demelbauer UM, Zehl M, Plematl A et al (2004) Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun Mass Spectrom 18(14):1575–1582
156.
go back to reference Bones J, McLoughlin N, Hilliard M et al (2011) 2D-LC Analysis of BRP 3 Erythropoietin N-Glycosylation using anion exchange fractionation and hydrophilic interaction UPLC reveals long Poly-N-Acetyl lactosamine extensions. Anal Chem 83:4154–4162 Bones J, McLoughlin N, Hilliard M et al (2011) 2D-LC Analysis of BRP 3 Erythropoietin N-Glycosylation using anion exchange fractionation and hydrophilic interaction UPLC reveals long Poly-N-Acetyl lactosamine extensions. Anal Chem 83:4154–4162
157.
go back to reference Harazono A, Kawasaki N, Itoh S et al (2006) Site-speciWc N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Biochem 348:259–268 Harazono A, Kawasaki N, Itoh S et al (2006) Site-speciWc N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Biochem 348:259–268
158.
go back to reference Schmitt S, Glebe D, Alving K et al (1999) Analysis of the Pre-S2 N- and O-Linked Glycans of the M surface protein from human hepatitis B virus. J Biol Chem 274:11945–11957 Schmitt S, Glebe D, Alving K et al (1999) Analysis of the Pre-S2 N- and O-Linked Glycans of the M surface protein from human hepatitis B virus. J Biol Chem 274:11945–11957
159.
go back to reference Zubarev RA, Horn DM, Fridriksson EK et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573 Zubarev RA, Horn DM, Fridriksson EK et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573
160.
go back to reference Kjeldsen F, Haselmann KF, Budnik BA et al (2002) Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem Phys Lett 356:201–206 Kjeldsen F, Haselmann KF, Budnik BA et al (2002) Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem Phys Lett 356:201–206
161.
go back to reference Kjeldsen F, Haselmann KF, Budnik BA et al (2003) Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. Anal Chem 75(10):2355–2361 Kjeldsen F, Haselmann KF, Budnik BA et al (2003) Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. Anal Chem 75(10):2355–2361
162.
go back to reference Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822 Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822
163.
go back to reference Schroeder MJ, Webb DJ, Shabanowitz J et al (2005) Methods for the detection of paxillin post-translational modifications and interacting proteins by mass spectrometry. J Proteome Res 4(5):1832–1841 Schroeder MJ, Webb DJ, Shabanowitz J et al (2005) Methods for the detection of paxillin post-translational modifications and interacting proteins by mass spectrometry. J Proteome Res 4(5):1832–1841
164.
go back to reference Hogan JM, Pitteri SJ, Chrisman PA et al (2005) Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 4(2):628–632 Hogan JM, Pitteri SJ, Chrisman PA et al (2005) Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 4(2):628–632
165.
go back to reference Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier Transform mass spectrometer. Anal Chem 71:4431–4436 Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier Transform mass spectrometer. Anal Chem 71:4431–4436
166.
go back to reference Perdivara I, Petrovich R, Allinquant B et al (2009) Elucidation of O-Glycosylation structures of the β-Amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision-induced dissociation. J Proteom Res 8:631–642 Perdivara I, Petrovich R, Allinquant B et al (2009) Elucidation of O-Glycosylation structures of the β-Amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision-induced dissociation. J Proteom Res 8:631–642
167.
go back to reference Wu SL, Huhmer AF, Hao Z et al (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with posttranslational modifications. J Proteome Res 6(11):4230–4244 Wu SL, Huhmer AF, Hao Z et al (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with posttranslational modifications. J Proteome Res 6(11):4230–4244
168.
go back to reference Tsarbopoulos A, Bahr U, Pramanik BN et al (1997) Glycoprotein Analysis by Delayed extraction and post-source decay MALDI TOF MS. Int J Mass Spectrom Ion Process 169(170):251–261 Tsarbopoulos A, Bahr U, Pramanik BN et al (1997) Glycoprotein Analysis by Delayed extraction and post-source decay MALDI TOF MS. Int J Mass Spectrom Ion Process 169(170):251–261
169.
go back to reference Wuhrer M, Hokke CH, Deelder AM (2004) Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. Rapid Commun Mass Spectrom 18:1741–1748 Wuhrer M, Hokke CH, Deelder AM (2004) Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. Rapid Commun Mass Spectrom 18:1741–1748
170.
go back to reference Bykova NV, Rampitsch C, Krokhin O et al (2006) Determination and characterization of site-specific N-Glycosylation using MALDI-Qq-TOF tandem mass spectrometry: case study with a plant protease. Anal Chem 78:1093–1103 Bykova NV, Rampitsch C, Krokhin O et al (2006) Determination and characterization of site-specific N-Glycosylation using MALDI-Qq-TOF tandem mass spectrometry: case study with a plant protease. Anal Chem 78:1093–1103
171.
go back to reference Kurogochi M, Matsushita T, Nishimura SI (2004) Post-translational modifications on proteins: facile and efficient procedure for the identification of O-Glycosylation sites by MALDI-LIFT-TOF/TOF mass spectrometry. Angew Chem Int Ed Engl 43:4071–4075 Kurogochi M, Matsushita T, Nishimura SI (2004) Post-translational modifications on proteins: facile and efficient procedure for the identification of O-Glycosylation sites by MALDI-LIFT-TOF/TOF mass spectrometry. Angew Chem Int Ed Engl 43:4071–4075
172.
go back to reference Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–451 Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–451
173.
go back to reference Zaia J (2010) Mass spectrometry and glycomics. OMICS 14(4):401–418 Zaia J (2010) Mass spectrometry and glycomics. OMICS 14(4):401–418
174.
go back to reference Wormald MR, Petrescu AJ, Pao Y-L et al (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386 Wormald MR, Petrescu AJ, Pao Y-L et al (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386
175.
go back to reference Koerner TA, Yu RK, Scarsdale JN et al (1988) Analysis of complex carbohydrate primary and secondary structure via two-dimensional proton nuclear magnetic resonance spectroscopy. Adv Exp Med Biol 228:759–784 Koerner TA, Yu RK, Scarsdale JN et al (1988) Analysis of complex carbohydrate primary and secondary structure via two-dimensional proton nuclear magnetic resonance spectroscopy. Adv Exp Med Biol 228:759–784
176.
go back to reference Perez S, Mulloy B (2005) Prospects for glycoinformatics. Curr Opin Struct Biol 15:517–524 Perez S, Mulloy B (2005) Prospects for glycoinformatics. Curr Opin Struct Biol 15:517–524
178.
go back to reference von der Lieth CW, Lütteke T, Frank M (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochim Biophys Acta 1760:568–577 von der Lieth CW, Lütteke T, Frank M (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochim Biophys Acta 1760:568–577
179.
go back to reference Cooper CA, Gasteiger E, Packer NH (2001) GlycoMod-a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1:340–349 Cooper CA, Gasteiger E, Packer NH (2001) GlycoMod-a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1:340–349
180.
go back to reference Go EP, Rebecchi KR, Dalpathado DS et al (2007) GlycoPep DB: a tool for glycopeptide analysis using a “smart search”. Anal Chem 79:1708–1713 Go EP, Rebecchi KR, Dalpathado DS et al (2007) GlycoPep DB: a tool for glycopeptide analysis using a “smart search”. Anal Chem 79:1708–1713
181.
go back to reference Goldberg D, Sutton-Smith M, Paulson J et al (2005) Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics 5:865–875 Goldberg D, Sutton-Smith M, Paulson J et al (2005) Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics 5:865–875
182.
go back to reference Goldberg D, Bern M, Parry S et al (2007) Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res 6:3995–4005 Goldberg D, Bern M, Parry S et al (2007) Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res 6:3995–4005
183.
go back to reference Ozohanics O, Krenyacz J, Ludanyi K et al (2008) GlycoMiner: a new software tool to elucidate glycopeptide composition. Rapid Commun Mass Spectrom 22:3245–3254 Ozohanics O, Krenyacz J, Ludanyi K et al (2008) GlycoMiner: a new software tool to elucidate glycopeptide composition. Rapid Commun Mass Spectrom 22:3245–3254
184.
go back to reference An HJ, Tillinghast JS, Woodruff DL et al (2006) A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. J Proteome Res 5:2800–2808 An HJ, Tillinghast JS, Woodruff DL et al (2006) A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. J Proteome Res 5:2800–2808
185.
go back to reference Ren JM, Rejtar T, Li L et al (2007) N-Glycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB). J Proteome Res 6:3162–3173 Ren JM, Rejtar T, Li L et al (2007) N-Glycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB). J Proteome Res 6:3162–3173
186.
go back to reference Irungu J, Go EP, Dalpathado DS et al (2007) Simplification of mass spectral analysis of acidic glycopeptides using GlycoPep ID. Anal Chem 79:3065–3074 Irungu J, Go EP, Dalpathado DS et al (2007) Simplification of mass spectral analysis of acidic glycopeptides using GlycoPep ID. Anal Chem 79:3065–3074
187.
go back to reference Hizukuri Y, Yamanishi Y, Nakamura O et al (2005) Extraction of leukemia specific glycan motifs in humans by computational glycomics. Carbohydr Res 340:2270–2278 Hizukuri Y, Yamanishi Y, Nakamura O et al (2005) Extraction of leukemia specific glycan motifs in humans by computational glycomics. Carbohydr Res 340:2270–2278
188.
go back to reference Aoki K, Yamaguchi A, Ueda N et al (2004) KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 32:W267–W272 Aoki K, Yamaguchi A, Ueda N et al (2004) KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 32:W267–W272
189.
go back to reference Aoki K, Mamitsuka H, Akutsu T et al (2005) A score matrix to reveal the hidden links in glycans. Bioinformatics 21:1457–1463 Aoki K, Mamitsuka H, Akutsu T et al (2005) A score matrix to reveal the hidden links in glycans. Bioinformatics 21:1457–1463
190.
go back to reference Hashimoto K, Goto S, Kawano S et al (2006) KEGG as a glycome informatics resource. Glycobiology 6:63R–70R Hashimoto K, Goto S, Kawano S et al (2006) KEGG as a glycome informatics resource. Glycobiology 6:63R–70R
191.
go back to reference Creighton TE (1984) Disulfide bond formation in proteins. In: Wold F, Moldave K (eds) Methods in enzymology, vol 107. Academic Press, San Diego, p 305 Creighton TE (1984) Disulfide bond formation in proteins. In: Wold F, Moldave K (eds) Methods in enzymology, vol 107. Academic Press, San Diego, p 305
192.
go back to reference Dranoff G (2009) Targets of protective tumor immunity. Ann NY Acad Sci 1174:74–80 Dranoff G (2009) Targets of protective tumor immunity. Ann NY Acad Sci 1174:74–80
193.
go back to reference Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468 Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468
194.
go back to reference Wess J, Han SJ, Kim SK et al (2008) Conformational changes involved in G-protein-coupled-receptor activation. Trends Pharmacol Sci 29:616–625 Wess J, Han SJ, Kim SK et al (2008) Conformational changes involved in G-protein-coupled-receptor activation. Trends Pharmacol Sci 29:616–625
195.
go back to reference Thornton JM (1981) Disulphide bridges in globular proteins. J Mol Biol 151:261–287 Thornton JM (1981) Disulphide bridges in globular proteins. J Mol Biol 151:261–287
196.
go back to reference Welker E, Raymond LD, Scheraga HA et al (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J Biol Chem 277:33477–33481 Welker E, Raymond LD, Scheraga HA et al (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J Biol Chem 277:33477–33481
197.
go back to reference Tsarbopoulos A, Pramanik B, Labdon J et al (1993) Isolation and characterization of a resistant core peptide of recombinant human Granulocyte-Macrophage colony-stimulating factor (GM-CSF); confirmation of the GM-CSF amino acid sequence by mass spectrometry. Protein Sci 2:1948–1958 Tsarbopoulos A, Pramanik B, Labdon J et al (1993) Isolation and characterization of a resistant core peptide of recombinant human Granulocyte-Macrophage colony-stimulating factor (GM-CSF); confirmation of the GM-CSF amino acid sequence by mass spectrometry. Protein Sci 2:1948–1958
198.
go back to reference Gorman JJ, Wallis TP, Pitt JJ (2002) Protein disulfide bond determination by mass spectrometry. Mass Spectrom Rev 21:183–216 Gorman JJ, Wallis TP, Pitt JJ (2002) Protein disulfide bond determination by mass spectrometry. Mass Spectrom Rev 21:183–216
199.
go back to reference Barber M, Bordoli RS, Sedgwick RD et al (1981) Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. J Chem Soc, Chem Commun 7:325–327 Barber M, Bordoli RS, Sedgwick RD et al (1981) Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. J Chem Soc, Chem Commun 7:325–327
200.
go back to reference Morris HR, Pucci P (1985) A new method for rapid assignment of S-S bridges in proteins. Biochem Biophys Res Commun 126:1122–1128 Morris HR, Pucci P (1985) A new method for rapid assignment of S-S bridges in proteins. Biochem Biophys Res Commun 126:1122–1128
201.
go back to reference Smith DL, Zhou Z (1990) Strategies for locating disulfide bonds in proteins. In: McCloskey JA (ed) Methods in enzymology, vol 193. Academic Press, New York, p 374 Smith DL, Zhou Z (1990) Strategies for locating disulfide bonds in proteins. In: McCloskey JA (ed) Methods in enzymology, vol 193. Academic Press, New York, p 374
202.
go back to reference Sundqvist B, Roepstorff P, Fohlman J et al (1984) Molecular weight determination of proteins by californium plasma desorption mass spectrometry. Science 226:696–698 Sundqvist B, Roepstorff P, Fohlman J et al (1984) Molecular weight determination of proteins by californium plasma desorption mass spectrometry. Science 226:696–698
203.
go back to reference Tsarbopoulos A, Becker GW, Occolowitz JL et al (1988) Peptide and protein mapping by 252Cf-Plasma desorption mass spectrometry. Anal Biochem 171:113–123 Tsarbopoulos A, Becker GW, Occolowitz JL et al (1988) Peptide and protein mapping by 252Cf-Plasma desorption mass spectrometry. Anal Biochem 171:113–123
204.
go back to reference Robertson JG, Adams GW, Medzihradszky KF et al (1994) Complete assignment of disulfide bonds in bovine dopamine beta-hydroxylase. Biochemistry 33:11563–11575 Robertson JG, Adams GW, Medzihradszky KF et al (1994) Complete assignment of disulfide bonds in bovine dopamine beta-hydroxylase. Biochemistry 33:11563–11575
205.
go back to reference Pramanik BN, Tsarbopoulos A, Labdon JE et al (1991) Structural analysis of biologically active peptides and recombinant proteins and their modified counterparts by mass spectrometry. J Chromatogr 562:377–389 Pramanik BN, Tsarbopoulos A, Labdon JE et al (1991) Structural analysis of biologically active peptides and recombinant proteins and their modified counterparts by mass spectrometry. J Chromatogr 562:377–389
206.
go back to reference Chen G, Liu YH, Pramanik BN (2007) LC/MS analysis of proteins and peptides in drug discovery. In: Kazakevich Y, LoBrutto R (eds) HPLC for pharmaceutical scientists. Wiley, New York Chen G, Liu YH, Pramanik BN (2007) LC/MS analysis of proteins and peptides in drug discovery. In: Kazakevich Y, LoBrutto R (eds) HPLC for pharmaceutical scientists. Wiley, New York
207.
go back to reference Tsarbopoulos A, Karas M, Strupat K et al (1994) Comparative mapping of recombinant proteins and glycoproteins by plasma desorption and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 66:2062–2070 Tsarbopoulos A, Karas M, Strupat K et al (1994) Comparative mapping of recombinant proteins and glycoproteins by plasma desorption and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 66:2062–2070
208.
go back to reference Patterson SD, Katta V (1994) Prompt fragmentation of disulfide-linked peptides during matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 66:3727–3732 Patterson SD, Katta V (1994) Prompt fragmentation of disulfide-linked peptides during matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 66:3727–3732
209.
go back to reference Sanger F (1953) A disulphide interchange reaction. Nature 171:1025–1026 Sanger F (1953) A disulphide interchange reaction. Nature 171:1025–1026
210.
go back to reference Yazdanparast R, Andrews PC, Smith DL et al (1987) Assignment of disulfide bonds in proteins by fast atom bombardment mass spectrometry. J Biol Chem 262:2507–2513 Yazdanparast R, Andrews PC, Smith DL et al (1987) Assignment of disulfide bonds in proteins by fast atom bombardment mass spectrometry. J Biol Chem 262:2507–2513
211.
go back to reference Tsarbopoulos A, Varnerin J, Cannon-Carlson S et al (2000) Mass spectrometric mapping of disulfide bonds in recombinant human Interleukin-13. J Mass Spectrom 35:446–453 Tsarbopoulos A, Varnerin J, Cannon-Carlson S et al (2000) Mass spectrometric mapping of disulfide bonds in recombinant human Interleukin-13. J Mass Spectrom 35:446–453
212.
go back to reference Sun Y, Bauer MD, Keough TW et al (1996) Disulfide bond location in proteins. Methods Mol Biol 61:181–210 Sun Y, Bauer MD, Keough TW et al (1996) Disulfide bond location in proteins. Methods Mol Biol 61:181–210
213.
go back to reference Bauer M, Sun Y, Degenhardt C et al (1993) Assignment of all four disulfide bridges in echistatin. J Prot Chem 12:759–764 Bauer M, Sun Y, Degenhardt C et al (1993) Assignment of all four disulfide bridges in echistatin. J Prot Chem 12:759–764
214.
go back to reference Bean MF, Carr SA (1992) Characterization of disulfide positions in proteins and sequence analysis of cystine-bridged peptides by tandem mass spectrometry. Anal Biochem 201:216–226 Bean MF, Carr SA (1992) Characterization of disulfide positions in proteins and sequence analysis of cystine-bridged peptides by tandem mass spectrometry. Anal Biochem 201:216–226
215.
go back to reference Pitt JJ, Da Silva E, Gorman JJ (2000) Determination of the disulfide bond arrangement of new castle disease virus hemagglutinin neuraminidase, correlation with a beta-sheet propeller structural fold predicted for paramyxoviridae attachment proteins. J Biol Chem 275:6469–6478 Pitt JJ, Da Silva E, Gorman JJ (2000) Determination of the disulfide bond arrangement of new castle disease virus hemagglutinin neuraminidase, correlation with a beta-sheet propeller structural fold predicted for paramyxoviridae attachment proteins. J Biol Chem 275:6469–6478
216.
go back to reference Gorman JJ, Ferguson BL, Speelman D et al (1997) Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci 6:1308–1315 Gorman JJ, Ferguson BL, Speelman D et al (1997) Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci 6:1308–1315
217.
go back to reference Angal S, King DJ, Bodmer MW et al (1993) A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30:105–108 Angal S, King DJ, Bodmer MW et al (1993) A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30:105–108
218.
go back to reference Wang Y, Lu Q, Wu SL et al (2011) Characterization and comparison of disulfide linkages and scrambling patterns in therapeutic monoclonal antibodies: using LC-MS with electron transfer dissociation. Anal Chem 83:3133–3140 Wang Y, Lu Q, Wu SL et al (2011) Characterization and comparison of disulfide linkages and scrambling patterns in therapeutic monoclonal antibodies: using LC-MS with electron transfer dissociation. Anal Chem 83:3133–3140
219.
go back to reference Wu SL, Jiang H, Hancock WS et al (2010) Identification of the unpaired cysteine status and complete mapping of the 17 disulfides of recombinant tissue plasminogen activator using LC-MS with Electron transfer dissociation/collision induced dissociation. Anal Chem 82:5296–5303 Wu SL, Jiang H, Hancock WS et al (2010) Identification of the unpaired cysteine status and complete mapping of the 17 disulfides of recombinant tissue plasminogen activator using LC-MS with Electron transfer dissociation/collision induced dissociation. Anal Chem 82:5296–5303
220.
go back to reference Bagal D, Valliere-Douglass JF, Balland A et al (2010) Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. Anal Chem 82:6751–6755 Bagal D, Valliere-Douglass JF, Balland A et al (2010) Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. Anal Chem 82:6751–6755
221.
go back to reference Wallis TP, Pitt JJ, Gorman JJ (2001) Identification of disulfide-linked peptides by isotope profiles produced by peptic digestion of proteins in 50 % (18) O water. Protein Sci 10:2251–2271 Wallis TP, Pitt JJ, Gorman JJ (2001) Identification of disulfide-linked peptides by isotope profiles produced by peptic digestion of proteins in 50 % (18) O water. Protein Sci 10:2251–2271
222.
go back to reference Rose K, Savoy LA, Simona MG et al (1988) C-terminal peptide identification by fast atom bombardment mass spectrometry. Biochem J 250:253–259 Rose K, Savoy LA, Simona MG et al (1988) C-terminal peptide identification by fast atom bombardment mass spectrometry. Biochem J 250:253–259
223.
go back to reference Dwek MV, Ross HA, Leathem AJ (2001) Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer. Proteomics 1:756–762 Dwek MV, Ross HA, Leathem AJ (2001) Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer. Proteomics 1:756–762
224.
go back to reference Rudd PM, Elliott T, Cresswell P et al (2001) Glycosylation and the immune system. Science 291:2370–2376 Rudd PM, Elliott T, Cresswell P et al (2001) Glycosylation and the immune system. Science 291:2370–2376
225.
go back to reference Peracaula R, Tabares G, Royle L et al (2003) Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 13:457–470 Peracaula R, Tabares G, Royle L et al (2003) Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 13:457–470
226.
go back to reference Butler M, Quelhas D, Critchley AJ et al (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13:601–622 Butler M, Quelhas D, Critchley AJ et al (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13:601–622
Metadata
Title
Post-Translationally Modified Proteins: Glycosylation and Disulfide Bond Formation
Authors
Anthony Tsarbopoulos
Fotini N. Bazoti
Copyright Year
2013
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7862-2_4

Premium Partners