Skip to main content
Top

2022 | OriginalPaper | Chapter

Potential Health Impact Assessment of Large-Scale Production of Batteries for the Electric Grid

Authors : Haoyang He, Shan Tian, Chris Glaubensklee, Brian Tarroja, Scott Samuelsen, Oladele A. Ogunseitan, Julie M. Schoenung

Published in: REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Battery storage technologies such as redox flow batteries (RFBs) and lithium-ion batteries (LIBs) are appealing candidates for large-scale energy storage requirements to support the integration of renewable energy into electric grids. To ensure that their environmental benefits outweigh the environmental costs of producing battery storage systems, it is vital to assess the potential health impacts of battery materials and waste emissions during production. Here, we present a case study based on life cycle impact assessment (LCIA) to characterize the toxicity hazard associated with the production of six types of battery storage technologies including three RFBs [vanadium redox flow battery (VRFB), zinc-bromine flow battery (ZBFB), and the all-iron flow battery (IFB)], and three LIBs [lithium iron phosphate (LFP), lithium nickel cobalt manganese hydroxide (NCM), and lithium manganese oxide (LMO)]. USETox® v2.0 (USETox®) was used for LCIA and we found higher impacts found higher impacts on human health outcomes for the production of LIBs than for RFBs, noting that uncertainties associated with the characterization factors demand caution in interpreting the results. Overall, the study provides (1) a comprehensive evaluation of life cycle impacts for materials, components, and systems associated with the production of burgeoning six battery energy storage technologies and (2) an important foundation for the identification of battery technologies with lower potential negative impacts associated with integrating energy storage in strategies for upscaling renewable energy sources.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference California Senate Bill No. 32, 2015–2016. California Global Warming Solutions Act of 2006: emissions limit California Senate Bill No. 32, 2015–2016. California Global Warming Solutions Act of 2006: emissions limit
2.
go back to reference California Senate Bill No. 100, 2017–2018. California Renewables Portfolio Standard Program: emissions of greenhouse gases. 2017–2018 California Senate Bill No. 100, 2017–2018. California Renewables Portfolio Standard Program: emissions of greenhouse gases. 2017–2018
3.
go back to reference Wood DL III, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium-ion batteries. J Power Sources 275:234–242CrossRef Wood DL III, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium-ion batteries. J Power Sources 275:234–242CrossRef
4.
go back to reference Tian S, He H, Kendall A, Davis SJ, Ogunseitan OA, Schoenung JM, Samuelsen S, Tarroja B (2021) Environmental benefit-detriment thresholds for flow battery energy storage systems: a case study in California. Appl Energy 300:117354 Tian S, He H, Kendall A, Davis SJ, Ogunseitan OA, Schoenung JM, Samuelsen S, Tarroja B (2021) Environmental benefit-detriment thresholds for flow battery energy storage systems: a case study in California. Appl Energy 300:117354
5.
go back to reference Liang Y, Su J, Xi B, Yu Y, Ji D, Sun Y, Cui C, Zhu J (2017) Life cycle assessment of lithium-ion batteries for greenhouse gas emissions. Resour Conserv Recycl 117:285–293CrossRef Liang Y, Su J, Xi B, Yu Y, Ji D, Sun Y, Cui C, Zhu J (2017) Life cycle assessment of lithium-ion batteries for greenhouse gas emissions. Resour Conserv Recycl 117:285–293CrossRef
6.
go back to reference Weber S, Peters JF, Baumann M, Weil M (2018) Life cycle assessment of a vanadium redox flow battery. Environ Sci Technol 52(18):10864–10873CrossRef Weber S, Peters JF, Baumann M, Weil M (2018) Life cycle assessment of a vanadium redox flow battery. Environ Sci Technol 52(18):10864–10873CrossRef
7.
go back to reference Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1(2):229–243CrossRef Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1(2):229–243CrossRef
8.
go back to reference Whitehead AH, Rabbow TJ, Trampert M, Pokorny P (2017) Critical safety features of the vanadium redox flow battery. J Power Sources 351:1–7CrossRef Whitehead AH, Rabbow TJ, Trampert M, Pokorny P (2017) Critical safety features of the vanadium redox flow battery. J Power Sources 351:1–7CrossRef
9.
go back to reference Park YJ, Kim MK, Kim HS, Lee BM (2018) Risk assessment of lithium-ion battery explosion: chemical leakages. J Toxicol Environ Health, Part B 21(6–8):370–381 Park YJ, Kim MK, Kim HS, Lee BM (2018) Risk assessment of lithium-ion battery explosion: chemical leakages. J Toxicol Environ Health, Part B 21(6–8):370–381
10.
go back to reference He H, Tian S, Tarroja B, Ogunseitan OA, Samuelsen S, Schoenung JM (2020) Flow battery production: materials selection and environmental impact. J Clean Prod 269:121740 He H, Tian S, Tarroja B, Ogunseitan OA, Samuelsen S, Schoenung JM (2020) Flow battery production: materials selection and environmental impact. J Clean Prod 269:121740
11.
go back to reference Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef
12.
go back to reference Notter DA, Gauch M, Widmer R, Wager P, Stamp A, Zah R, Althaus HJ (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Envrion Sci Technol 44(17):6550–6556CrossRef Notter DA, Gauch M, Widmer R, Wager P, Stamp A, Zah R, Althaus HJ (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Envrion Sci Technol 44(17):6550–6556CrossRef
15.
go back to reference Hauschild MZ, Huijbregts M, Jolliet O, MacLeod M, Margni M, van de Meent D, Rosenbaum RK, McKone TE (2008) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42(19):7032–7037CrossRef Hauschild MZ, Huijbregts M, Jolliet O, MacLeod M, Margni M, van de Meent D, Rosenbaum RK, McKone TE (2008) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42(19):7032–7037CrossRef
16.
go back to reference Henderson AD, Hauschild MZ, van de Meent D, Huijbregts MA, Larsen HF, Margni M, McKone TE, Payet J, Rosenbaum RK, Jolliet O (2011) USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16(8):701–709CrossRef Henderson AD, Hauschild MZ, van de Meent D, Huijbregts MA, Larsen HF, Margni M, McKone TE, Payet J, Rosenbaum RK, Jolliet O (2011) USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16(8):701–709CrossRef
17.
go back to reference Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MA, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546CrossRef Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MA, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546CrossRef
Metadata
Title
Potential Health Impact Assessment of Large-Scale Production of Batteries for the Electric Grid
Authors
Haoyang He
Shan Tian
Chris Glaubensklee
Brian Tarroja
Scott Samuelsen
Oladele A. Ogunseitan
Julie M. Schoenung
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92563-5_43