Skip to main content
Top
Published in:

07-09-2022

Potential Singularity of the 3D Euler Equations in the Interior Domain

Author: Thomas Y. Hou

Published in: Foundations of Computational Mathematics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Whether the 3D incompressible Euler equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the 3D axisymmetric incompressible Euler equations with smooth initial data of finite energy develop a potential finite time singularity at the origin. This potential singularity is different from the blow-up scenario revealed by Luo and Hou (111:12968–12973, 2014) and (12:1722–1776, 2014), which occurs on the boundary. Our initial condition has a simple form and shares several attractive features of a more sophisticated initial condition constructed by Hou and Huang in (arXiv:​2102.​06663, 2021) and (435:133257, 2022). One important difference between these two blow-up scenarios is that the solution for our initial data has a one-scale structure instead of a two-scale structure reported in Hou and Huang (arXiv:​2102.​06663, 2021) and (435:133257, 2022). More importantly, the solution seems to develop nearly self-similar scaling properties that are compatible with those of the 3D Navier–Stokes equations. We will present numerical evidence that the 3D Euler equations seem to develop a potential finite time singularity. Moreover, the nearly self-similar profile seems to be very stable to the small perturbation of the initial data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J. Beale, T. Kato, and A. Majda. Remarks on the breakdown of smooth solutions for the \(3\)-D Euler equations. Commun. Math. Phys., 94(1):61–66, 1984.MathSciNetCrossRefMATH J. Beale, T. Kato, and A. Majda. Remarks on the breakdown of smooth solutions for the \(3\)-D Euler equations. Commun. Math. Phys., 94(1):61–66, 1984.MathSciNetCrossRefMATH
2.
go back to reference O. N. Boratav and R. B. Pelz. Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids, 6:2757–2784, 1994.CrossRefMATH O. N. Boratav and R. B. Pelz. Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids, 6:2757–2784, 1994.CrossRefMATH
3.
go back to reference M. Brenner, S. Hormoz, and A. Pumir. Potential singularity mechanism for the Euler equations. Phys. Rev. Fluids, 1:084503, 2016.CrossRef M. Brenner, S. Hormoz, and A. Pumir. Potential singularity mechanism for the Euler equations. Phys. Rev. Fluids, 1:084503, 2016.CrossRef
4.
go back to reference J. Chen and T. Y. Hou. Finite time blowup of \(2\)D Boussinesq and \(3\)D Euler equations with \({C}^{1,\alpha }\) velocity and boundary. CMP, 383(3):1559–1667, 2021.MATH J. Chen and T. Y. Hou. Finite time blowup of \(2\)D Boussinesq and \(3\)D Euler equations with \({C}^{1,\alpha }\) velocity and boundary. CMP, 383(3):1559–1667, 2021.MATH
5.
go back to reference J. Chen and T. Y. Hou. On stability and instability of \(c^{1,\alpha }\) singular solutions of the \(3\)D Euler and \(2\)D Boussinesq equations. arXiv:2206.01296 [math.AP], 2022. J. Chen and T. Y. Hou. On stability and instability of \(c^{1,\alpha }\) singular solutions of the \(3\)D Euler and \(2\)D Boussinesq equations. arXiv:​2206.​01296 [math.AP], 2022.
6.
go back to reference J. Chen, T. Y. Hou, and D. Huang. Asymptotically self-similar blowup of the Hou-Luo model for the \(3\)D Euler equations. arXiv:2106.05422 [math.AP], 2021. J. Chen, T. Y. Hou, and D. Huang. Asymptotically self-similar blowup of the Hou-Luo model for the \(3\)D Euler equations. arXiv:​2106.​05422 [math.AP], 2021.
8.
go back to reference K. Choi, T. Y. Hou, A. Kiselev, G. Luo, V. Sverak, and Y. Yao. On the finite-time blowup of a \(1\)D model for the \(3\)D axisymmetric Euler equations. CPAM, 70(11):2218–2243, 2017.MATH K. Choi, T. Y. Hou, A. Kiselev, G. Luo, V. Sverak, and Y. Yao. On the finite-time blowup of a \(1\)D model for the \(3\)D axisymmetric Euler equations. CPAM, 70(11):2218–2243, 2017.MATH
9.
go back to reference K. Choi, A. Kiselev, , and Y. Yao. Finite time blow up for a \(1\)D model of \(2\)D Boussinesq system. CMP, 334(3):1667–1679, 2015.MathSciNetMATH K. Choi, A. Kiselev, , and Y. Yao. Finite time blow up for a \(1\)D model of \(2\)D Boussinesq system. CMP, 334(3):1667–1679, 2015.MathSciNetMATH
10.
go back to reference C. Collot, T. Ghoul, and N. Masmoudi. Singularity formation for Burgers equation with transverse viscosity. arXiv:1803.07826v2 [math.AP], 2020. C. Collot, T. Ghoul, and N. Masmoudi. Singularity formation for Burgers equation with transverse viscosity. arXiv:​1803.​07826v2 [math.AP], 2020.
11.
go back to reference P. Constantin, C. Fefferman, and A. Majda. Geometric constraints on potentially singular solutions for the \(3\)-D Euler equations. Commun. PDEs, 21:559–571, 1996.MathSciNetCrossRefMATH P. Constantin, C. Fefferman, and A. Majda. Geometric constraints on potentially singular solutions for the \(3\)-D Euler equations. Commun. PDEs, 21:559–571, 1996.MathSciNetCrossRefMATH
12.
go back to reference J. Deng, T. Y. Hou, and X. Yu. Geometric properties and non-blowup of \(3\)D incompressible Euler flow. Commun. PDEs, 30:225–243, 2005.CrossRefMATH J. Deng, T. Y. Hou, and X. Yu. Geometric properties and non-blowup of \(3\)D incompressible Euler flow. Commun. PDEs, 30:225–243, 2005.CrossRefMATH
13.
go back to reference W. E and C.-W. Shu. Small-scale structures in Boussinesq convection. Phys. Fluids, 6:49–58, 1994. W. E and C.-W. Shu. Small-scale structures in Boussinesq convection. Phys. Fluids, 6:49–58, 1994.
14.
go back to reference T. M. Elgindi. Finite-time singularity formation for \({C}^{1,\alpha }\) solutions to the incompressible euler equations on \({R}^3\). Annals of Mathematics, 194(3):647–727, 2021.MathSciNetCrossRefMATH T. M. Elgindi. Finite-time singularity formation for \({C}^{1,\alpha }\) solutions to the incompressible euler equations on \({R}^3\). Annals of Mathematics, 194(3):647–727, 2021.MathSciNetCrossRefMATH
15.
go back to reference T. M. Elgindi, T. Ghoul, and N. Masmoudi. On the stability of self-similar blow-up for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \({R}^3\). arXiv:1910.14071, 2019. T. M. Elgindi, T. Ghoul, and N. Masmoudi. On the stability of self-similar blow-up for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \({R}^3\). arXiv:​1910.​14071, 2019.
16.
go back to reference T. M. Elgindi and I. J. Jeong. The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain. Adv. Math., 393:10891, 2021.MathSciNetCrossRefMATH T. M. Elgindi and I. J. Jeong. The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain. Adv. Math., 393:10891, 2021.MathSciNetCrossRefMATH
18.
go back to reference R. Grauer and T. C. Sideris. Numerical computation of \(3\)D incompressible ideal fluids with swirl. Phys. Rev. Lett., 67:3511–3514, 1991.CrossRef R. Grauer and T. C. Sideris. Numerical computation of \(3\)D incompressible ideal fluids with swirl. Phys. Rev. Lett., 67:3511–3514, 1991.CrossRef
19.
20.
go back to reference T. Y. Hou and D. Huang. Potential singularity formation of \(3\)D axisymmetric Euler equations with degenerate variable viscosity coefficients. arXiv:2102.06663, 2021. T. Y. Hou and D. Huang. Potential singularity formation of \(3\)D axisymmetric Euler equations with degenerate variable viscosity coefficients. arXiv:​2102.​06663, 2021.
21.
go back to reference T. Y. Hou and D. Huang. A potential two-scale traveling wave asingularity for \(3\)D incompressible Euler equations. Physica D, 435:133257, 2022.CrossRefMATH T. Y. Hou and D. Huang. A potential two-scale traveling wave asingularity for \(3\)D incompressible Euler equations. Physica D, 435:133257, 2022.CrossRefMATH
22.
go back to reference T. Y. Hou and C. Li. Dynamic stability of the three-dimensional axisymmetric Navier–Stokes equations with swirl. CPAM, 61(5):661–697, 2008.MathSciNetMATH T. Y. Hou and C. Li. Dynamic stability of the three-dimensional axisymmetric Navier–Stokes equations with swirl. CPAM, 61(5):661–697, 2008.MathSciNetMATH
23.
go back to reference T. Y. Hou and R. Li. Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci., 16:639–664, 2006.MathSciNetCrossRefMATH T. Y. Hou and R. Li. Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci., 16:639–664, 2006.MathSciNetCrossRefMATH
24.
25.
go back to reference R. M. Kerr. Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A, 5:1725–1746, 1993.MathSciNetCrossRefMATH R. M. Kerr. Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A, 5:1725–1746, 1993.MathSciNetCrossRefMATH
26.
go back to reference A. Kiselev. Small scales and singularity formation in fluid dynamics. In Proceedings of the International Congress of Mathematicians, volume 3, 2018. A. Kiselev. Small scales and singularity formation in fluid dynamics. In Proceedings of the International Congress of Mathematicians, volume 3, 2018.
27.
go back to reference A. Kiselev, L. Ryzhik, Y. Yao, and A. Zlatos. Finite time singularity for the modified SQG patch equation. Ann. Math., 184:909–948, 2016.MathSciNetCrossRefMATH A. Kiselev, L. Ryzhik, Y. Yao, and A. Zlatos. Finite time singularity for the modified SQG patch equation. Ann. Math., 184:909–948, 2016.MathSciNetCrossRefMATH
28.
go back to reference A. Kiselev and V. Sverak. Small scale creation for solutions of the incompressible two dimensional Euler equation. Annals of Mathematics, 180:1205–1220, 2014.MathSciNetCrossRefMATH A. Kiselev and V. Sverak. Small scale creation for solutions of the incompressible two dimensional Euler equation. Annals of Mathematics, 180:1205–1220, 2014.MathSciNetCrossRefMATH
29.
go back to reference L. Lafleche, A. F. Vasseur, and M. Vishik. Instability for axisymmetric blow-up solutions to incompressible Euler equations. J. Math. Pures Appl., 155:140–154, 2021.MathSciNetCrossRefMATH L. Lafleche, A. F. Vasseur, and M. Vishik. Instability for axisymmetric blow-up solutions to incompressible Euler equations. J. Math. Pures Appl., 155:140–154, 2021.MathSciNetCrossRefMATH
30.
go back to reference J. Liu and W. Wang. Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows. SINUM, 44(6):2456–2480, 2006.MathSciNetCrossRefMATH J. Liu and W. Wang. Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows. SINUM, 44(6):2456–2480, 2006.MathSciNetCrossRefMATH
31.
go back to reference G. Luo and T. Y. Hou. Potentially singular solutions of the \(3\)D axisymmetric Euler equations. Proceedings of the National Academy of Sciences, 111(36):12968–12973, 2014.CrossRefMATH G. Luo and T. Y. Hou. Potentially singular solutions of the \(3\)D axisymmetric Euler equations. Proceedings of the National Academy of Sciences, 111(36):12968–12973, 2014.CrossRefMATH
32.
go back to reference G. Luo and T. Y. Hou. Toward the finite-time blowup of the \(3\)D axisymmetric Euler equations: a numerical investigation. Multiscale Modeling & Simulation, 12(4):1722–1776, 2014.MathSciNetCrossRefMATH G. Luo and T. Y. Hou. Toward the finite-time blowup of the \(3\)D axisymmetric Euler equations: a numerical investigation. Multiscale Modeling & Simulation, 12(4):1722–1776, 2014.MathSciNetCrossRefMATH
33.
go back to reference A. Majda and A. Bertozzi. Vorticity and incompressible flow, volume 27. Cambridge University Press, 2002. A. Majda and A. Bertozzi. Vorticity and incompressible flow, volume 27. Cambridge University Press, 2002.
34.
go back to reference D. McLaughlin, G. Papanicolaou, C. Sulem, and P. Sulem. Focusing singularity of the cubic schrödinger equation. Physical Review A, 34(2):1200, 1986.CrossRef D. McLaughlin, G. Papanicolaou, C. Sulem, and P. Sulem. Focusing singularity of the cubic schrödinger equation. Physical Review A, 34(2):1200, 1986.CrossRef
35.
go back to reference A. F. Vasseur and M. Vishik. Blow-up solutions to \(3\)D Euler are hydrodynamically unstable. CMP, 378:557–568, 2020.MathSciNetMATH A. F. Vasseur and M. Vishik. Blow-up solutions to \(3\)D Euler are hydrodynamically unstable. CMP, 378:557–568, 2020.MathSciNetMATH
Metadata
Title
Potential Singularity of the 3D Euler Equations in the Interior Domain
Author
Thomas Y. Hou
Publication date
07-09-2022
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 6/2023
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-022-09585-5

Premium Partner