Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

12-02-2020 | Original Article | Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020

Pothole detection using location-aware convolutional neural networks

Journal:
International Journal of Machine Learning and Cybernetics > Issue 4/2020
Authors:
Hanshen Chen, Minghai Yao, Qinlong Gu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Poor road conditions, such as potholes, are a nuisance to society, which would annoy passengers, damage vehicles, and even cause accidents. Thus, detecting potholes is an important step toward pavement maintenance and rehabilitation to improve road conditions. Potholes have different shapes, scales, shadows, and illumination effects, and highly complicated backgrounds can be involved. Therefore, detection of potholes in road images is still a challenging task. In this study, we focus on pothole detection in 2D vision and present a new method to detect potholes based on location-aware convolutional neural networks, which focuses on the discriminative regions in the road instead of the global context. It consists of two main subnetworks: the first localization subnetwork employs a high recall network model to find as many candidate regions as possible, and the second part-based subnetwork performs classification on the candidates on which the network is expected to focus. The experiments using the public pothole dataset show that the proposed method could achieve high precision (95.2%), recall (92.0%) simultaneously, and outperform the most existing methods. The results also demonstrate that accurate part localization considerably increases classification performance while maintains high computational efficiency. The source code is available at https://​github.​com/​hanshenchen/​pothole-detection.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020 Go to the issue