Skip to main content
Top
Published in:

19-12-2023

Power–Area-Optimized Approximate Multiplier Design for Image Fusion

Authors: Garima Thakur, Harsh Sohal, Shruti Jain

Published in: Circuits, Systems, and Signal Processing | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, three approximate multiplier architectures are proposed: area-optimized approximate multiplier (AOM), power-optimized approximate multiplier (POM), and power- and area-optimized approximate multiplier (PAOM). These designs are implemented using speculative Han–Carlson adder and compressor-based multiplier blocks. Han–Carlson adder is used as the basic adder block in the final addition stage of all the three approximate multiplier designs. Different types of compressors (3:2, 4:2, 5:2, 6:2, 7:2, 8:2) are used for the implementation of the energy-efficient approximate multiplier blocks. All the simulations are performed on VIVADO design tool. Also, the designed multipliers are validated for image blending (an error-tolerant) application. The proposed power optimization approximate multiplier shows 0.86%, 10.54% PSNR improvement in comparison with area optimization approximate multiplier and power and area optimization approximate multiplier, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Literature
1.
go back to reference M. Ahmadinejad, M.H. Moaiyeri, Energy- and quality-efficient approximate multipliers for neural network and image processing applications. IEEE Trans. Emerg. Top. Comput. 10(2), 1105–1116 (2021) M. Ahmadinejad, M.H. Moaiyeri, Energy- and quality-efficient approximate multipliers for neural network and image processing applications. IEEE Trans. Emerg. Top. Comput. 10(2), 1105–1116 (2021)
2.
go back to reference O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(4), 1352–1361 (2017)CrossRef O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(4), 1352–1361 (2017)CrossRef
3.
go back to reference I. Alouani, H. Ahangari, O. Ozturk, S. Niar, A novel heterogeneous approximate multiplier for low power and high performance. IEEE Embed. Syst. Lett. 10(2), 45–48 (2018)CrossRef I. Alouani, H. Ahangari, O. Ozturk, S. Niar, A novel heterogeneous approximate multiplier for low power and high performance. IEEE Embed. Syst. Lett. 10(2), 45–48 (2018)CrossRef
4.
go back to reference M.S. Ansari, H. Jiang, B.F. Cockburn, J. Han, Low-power approximate multipliers using encoded partial products and approximate compressors. IEEE J. Emerg. Select. Top. Circuits Syst. 8, 404–416 (2018)ADSCrossRef M.S. Ansari, H. Jiang, B.F. Cockburn, J. Han, Low-power approximate multipliers using encoded partial products and approximate compressors. IEEE J. Emerg. Select. Top. Circuits Syst. 8, 404–416 (2018)ADSCrossRef
5.
go back to reference V.J. Arulkarthick, A. Rathinaswamy, Delay and area efficient approximate multiplier using reverse carry propagate full adder. Microprocess. Microsyst. 74, 103009 (2020)CrossRef V.J. Arulkarthick, A. Rathinaswamy, Delay and area efficient approximate multiplier using reverse carry propagate full adder. Microprocess. Microsyst. 74, 103009 (2020)CrossRef
6.
go back to reference T. Ayhan, M. Altun, Circuit aware approximate system design with case studies in image processing and neural networks. IEEE Access 7, 4726–4734 (2019)CrossRef T. Ayhan, M. Altun, Circuit aware approximate system design with case studies in image processing and neural networks. IEEE Access 7, 4726–4734 (2019)CrossRef
7.
go back to reference M. Ha, S. Lee, Multipliers with approximate 4–2 compressors and error recovery modules. IEEE Embed. Syst. Lett. 10(1), 6–9 (2018)CrossRef M. Ha, S. Lee, Multipliers with approximate 4–2 compressors and error recovery modules. IEEE Embed. Syst. Lett. 10(1), 6–9 (2018)CrossRef
8.
go back to reference U.A. Kumar, S.K. Chatterjee, S.E. Ahmed, Low-power compressor-based approximate multipliers with error correcting module. IEEE Embed. Syst. Lett. 14(2), 59–62 (2022)CrossRef U.A. Kumar, S.K. Chatterjee, S.E. Ahmed, Low-power compressor-based approximate multipliers with error correcting module. IEEE Embed. Syst. Lett. 14(2), 59–62 (2022)CrossRef
9.
go back to reference W. Liu, T. Cao, P. Yin, Y. Zhu, C. Wang, E.E. Swartzlander, F. Lombardi, Design and analysis of approximate redundant binary multipliers. IEEE Trans. Comput. 68(6), 804–819 (2019)MathSciNetCrossRef W. Liu, T. Cao, P. Yin, Y. Zhu, C. Wang, E.E. Swartzlander, F. Lombardi, Design and analysis of approximate redundant binary multipliers. IEEE Trans. Comput. 68(6), 804–819 (2019)MathSciNetCrossRef
10.
go back to reference W. Liu, T. Zhang, E. McLarnon, M. O’Neill, P. Montuschi, F. Lombardi, Design and analysis of majority logic based approximate adders and multipliers. IEEE Trans. Emerg. Top. Comput. 9(3), 1609–1624 (2019)CrossRef W. Liu, T. Zhang, E. McLarnon, M. O’Neill, P. Montuschi, F. Lombardi, Design and analysis of majority logic based approximate adders and multipliers. IEEE Trans. Emerg. Top. Comput. 9(3), 1609–1624 (2019)CrossRef
11.
go back to reference W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, F. Lombardi, Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2856–2868 (2018)CrossRef W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, F. Lombardi, Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2856–2868 (2018)CrossRef
12.
go back to reference C. Liu, J. Han, F. Lombardi, A low-power, high-performance approximate multiplier with configurable partial error recovery. In Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Dresden, Germany, pp. 1–4 (2014) C. Liu, J. Han, F. Lombardi, A low-power, high-performance approximate multiplier with configurable partial error recovery. In Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Dresden, Germany, pp. 1–4 (2014)
13.
go back to reference U. Lotrič, R. Pilipović, P. Bulić, A hybrid radix-4 and approximate logarithmic multiplier for energy efficient image processing. Electronics 10(10), 1175 (2021)CrossRef U. Lotrič, R. Pilipović, P. Bulić, A hybrid radix-4 and approximate logarithmic multiplier for energy efficient image processing. Electronics 10(10), 1175 (2021)CrossRef
14.
go back to reference Y. Mannepalli, V. B. Korede, and M. Rao, Novel approximate multiplier designs for edge detection application. In Proceedings of the 2021 on Great Lakes Symposium on VLSI (GLSVLSI ’21), New York, USA, pp. 371–377 (2021) Y. Mannepalli, V. B. Korede, and M. Rao, Novel approximate multiplier designs for edge detection application. In Proceedings of the 2021 on Great Lakes Symposium on VLSI (GLSVLSI ’21), New York, USA, pp. 371–377 (2021)
15.
go back to reference R. Marimuthu, Y.E. Rezinold, P.S. Mallick, Design and analysis of multiplier using approximate 15-4 compressor. IEEE Access 5, 1027–1036 (2017)CrossRef R. Marimuthu, Y.E. Rezinold, P.S. Mallick, Design and analysis of multiplier using approximate 15-4 compressor. IEEE Access 5, 1027–1036 (2017)CrossRef
16.
go back to reference A. Momeni, J. Han, P. Montuschi, F. Lombardi, Design and analysis of approximate compressors for multiplication. IEEE Trans. Comput. 64(4), 984–994 (2015)MathSciNetCrossRef A. Momeni, J. Han, P. Montuschi, F. Lombardi, Design and analysis of approximate compressors for multiplication. IEEE Trans. Comput. 64(4), 984–994 (2015)MathSciNetCrossRef
17.
go back to reference R. Pilipović, P. Bulić, On the design of logarithmic multiplier using radix-4 booth encoding. IEEE Access 8, 64578–64590 (2020)CrossRef R. Pilipović, P. Bulić, On the design of logarithmic multiplier using radix-4 booth encoding. IEEE Access 8, 64578–64590 (2020)CrossRef
18.
go back to reference K.M. Reddy, M.H. Vasantha, Y.B.N. Kumar, D. Dwivedi, Design and analysis of multiplier using approximate 4-2 compressor. AEU Int. J. Electron. Commun. 107, 89–97 (2019)CrossRef K.M. Reddy, M.H. Vasantha, Y.B.N. Kumar, D. Dwivedi, Design and analysis of multiplier using approximate 4-2 compressor. AEU Int. J. Electron. Commun. 107, 89–97 (2019)CrossRef
19.
go back to reference F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 66(11), 4200–4208 (2019)CrossRef F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 66(11), 4200–4208 (2019)CrossRef
20.
go back to reference F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, An ultra-efficient approximate multiplier with error compensation for error-resilient applications. IEEE Trans. Circuits Syst. II Express Briefs 70(2), 776–780 (2023) F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, An ultra-efficient approximate multiplier with error compensation for error-resilient applications. IEEE Trans. Circuits Syst. II Express Briefs 70(2), 776–780 (2023)
21.
go back to reference A.G.M. Strollo, E. Napoli, D. De Caro, N. Petra, G.D. Meo, Comparison and extension of approximate 4-2 compressors for low-power approximate multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3021–3034 (2020)MathSciNetCrossRef A.G.M. Strollo, E. Napoli, D. De Caro, N. Petra, G.D. Meo, Comparison and extension of approximate 4-2 compressors for low-power approximate multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3021–3034 (2020)MathSciNetCrossRef
22.
go back to reference A.G.M. Strollo, E. Napoli, D.D. Caro, N. Petra, G. Saggese, G.D. Meo, Approximate multipliers using static segmentation: error analysis and improvements. IEEE Trans. Circuits Syst. I Regul. Pap. 69(6), 2449–2462 (2022)CrossRef A.G.M. Strollo, E. Napoli, D.D. Caro, N. Petra, G. Saggese, G.D. Meo, Approximate multipliers using static segmentation: error analysis and improvements. IEEE Trans. Circuits Syst. I Regul. Pap. 69(6), 2449–2462 (2022)CrossRef
23.
go back to reference G. Thakur, H. Sohal, S. Jain, Design and comparative performance analysis of various multiplier circuit. J. Sci. Eng. Res. 5(7), 340–349 (2018) G. Thakur, H. Sohal, S. Jain, Design and comparative performance analysis of various multiplier circuit. J. Sci. Eng. Res. 5(7), 340–349 (2018)
24.
go back to reference G. Thakur, H. Sohal, S. Jain, An efficient design of 8-bit high speed parallel prefix adder. Res. J. Sci. Technol. 10(2), 105–114 (2018)CrossRef G. Thakur, H. Sohal, S. Jain, An efficient design of 8-bit high speed parallel prefix adder. Res. J. Sci. Technol. 10(2), 105–114 (2018)CrossRef
25.
go back to reference G. Thakur, H. Sohal, S. Jain, High speed RADIX-2 butterfly structure using novel Wallace multiplier. Int. J. Eng. Technol. 7(34), 213–217 (2018)CrossRef G. Thakur, H. Sohal, S. Jain, High speed RADIX-2 butterfly structure using novel Wallace multiplier. Int. J. Eng. Technol. 7(34), 213–217 (2018)CrossRef
26.
go back to reference G. Thakur, H. Sohal, S. Jain, FPGA-based parallel prefix speculative adder for fast computation application. In 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, pp 206–210 (2020) G. Thakur, H. Sohal, S. Jain, FPGA-based parallel prefix speculative adder for fast computation application. In 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, pp 206–210 (2020)
27.
go back to reference G. Thakur, H. Sohal, S. Jain, Design and analysis of high-speed parallel prefix adder for digital circuit design applications. In 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India pp. 095–100 (2020) G. Thakur, H. Sohal, S. Jain, Design and analysis of high-speed parallel prefix adder for digital circuit design applications. In 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India pp. 095–100 (2020)
28.
go back to reference G. Thakur, H. Sohal, S. Jain, A novel parallel prefix adder for optimized Radix-2 FFT processor. Multidimension. Syst. Signal Process. 32, 1041–1063 (2021)CrossRef G. Thakur, H. Sohal, S. Jain, A novel parallel prefix adder for optimized Radix-2 FFT processor. Multidimension. Syst. Signal Process. 32, 1041–1063 (2021)CrossRef
29.
go back to reference G. Thakur, H. Sohal, S. Jain, A novel ASIC-based variable latency speculative parallel prefix adder for image processing application. Circuits Syst. Signal Process. 40(11), 5682–5704 (2021)CrossRef G. Thakur, H. Sohal, S. Jain, A novel ASIC-based variable latency speculative parallel prefix adder for image processing application. Circuits Syst. Signal Process. 40(11), 5682–5704 (2021)CrossRef
30.
go back to reference N.V. Toan, J. Lee, FPGA-based multi-level approximate multipliers for high-performance error-resilient applications. IEEE Access 8, 25481–25497 (2020)CrossRef N.V. Toan, J. Lee, FPGA-based multi-level approximate multipliers for high-performance error-resilient applications. IEEE Access 8, 25481–25497 (2020)CrossRef
31.
go back to reference S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, TOSAM: an energy-efficient truncation- and rounding-based scalable approximate multiplier. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(5), 1161–1173 (2019)CrossRef S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, TOSAM: an energy-efficient truncation- and rounding-based scalable approximate multiplier. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(5), 1161–1173 (2019)CrossRef
32.
go back to reference S. Venkatachalam, S. Ko, Design of power and area efficient approximate multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(5), 1782–1786 (2017)CrossRef S. Venkatachalam, S. Ko, Design of power and area efficient approximate multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(5), 1782–1786 (2017)CrossRef
33.
go back to reference Z. Yang, J. Han, F. Lombardi, Approximate compressors for error-resilient multiplier design. In 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) pp. 183–186 (2015) Z. Yang, J. Han, F. Lombardi, Approximate compressors for error-resilient multiplier design. In 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) pp. 183–186 (2015)
34.
go back to reference T. Yang, T. Ukezono, T. Sato Low-Power and High-Speed Approximate Multiplier Design with a Tree Compressor. In 2017 IEEE International Conference on Computer Design (ICCD), pp 89–96 (2017) T. Yang, T. Ukezono, T. Sato Low-Power and High-Speed Approximate Multiplier Design with a Tree Compressor. In 2017 IEEE International Conference on Computer Design (ICCD), pp 89–96 (2017)
35.
go back to reference N. Zacharias, V. Lalu, Study of Approximate Multiplier with Different Adders. In 2020 International Conference on Smart Electronics and Communication (ICOSEC), pp 1264–1267 (2020) N. Zacharias, V. Lalu, Study of Approximate Multiplier with Different Adders. In 2020 International Conference on Smart Electronics and Communication (ICOSEC), pp 1264–1267 (2020)
36.
go back to reference R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, M. Pedram, RoBA multiplier: a rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(2), 393–401 (2017)CrossRef R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, M. Pedram, RoBA multiplier: a rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(2), 393–401 (2017)CrossRef
Metadata
Title
Power–Area-Optimized Approximate Multiplier Design for Image Fusion
Authors
Garima Thakur
Harsh Sohal
Shruti Jain
Publication date
19-12-2023
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 4/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-023-02559-0