Skip to main content
Top

2024 | OriginalPaper | Chapter

Power Consumption and Process Cost Prediction of Customized Products Using Explainable AI: A Case in the Steel Industry

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the challenges of modern steel production, particularly the shift towards mass customization and the need for efficient power consumption and cost prediction. It introduces the concept of Explainable AI (XAI) as a tool to enhance transparency and accuracy in these predictions. The research compares various machine learning models, such as Elastic Net Regression and Random Forest Regression, and employs XAI methods like SHAP and LIME to interpret the models' outputs. The findings show that XAI can provide valuable insights into the factors influencing power consumption and process costs, enabling manufacturers to make informed decisions and optimize their production processes. The chapter also discusses the implications of these predictions for improving sustainability and competitiveness in the steel industry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)MathSciNetCrossRef Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)MathSciNetCrossRef
3.
go back to reference Bhinge, R., Park, J., Law, K.H., Dornfeld, D.A., Helu, M., Rachuri, S.: Toward a generalized energy prediction model for machine tools. J. Manuf. Sci. Eng. 139(4) (2017) Bhinge, R., Park, J., Law, K.H., Dornfeld, D.A., Helu, M., Rachuri, S.: Toward a generalized energy prediction model for machine tools. J. Manuf. Sci. Eng. 139(4) (2017)
5.
go back to reference Chen, C., Liu, Y., Kumar, M., Qin, J.: Energy consumption modelling using deep learning technique-a case study of EAF. Procedia CIRP 72, 1063–1068 (2018)CrossRef Chen, C., Liu, Y., Kumar, M., Qin, J.: Energy consumption modelling using deep learning technique-a case study of EAF. Procedia CIRP 72, 1063–1068 (2018)CrossRef
6.
go back to reference Chen, C., Liu, Y., Kumar, M., Qin, J., Ren, Y.: Energy consumption modelling using deep learning embedded semi-supervised learning. Comput. Ind. Eng. 135, 757–765 (2019)CrossRef Chen, C., Liu, Y., Kumar, M., Qin, J., Ren, Y.: Energy consumption modelling using deep learning embedded semi-supervised learning. Comput. Ind. Eng. 135, 757–765 (2019)CrossRef
7.
go back to reference Chen, H., Covert, I.C., Lundberg, S.M., Lee, S.I.: Algorithms to estimate shapley value feature attributions. arXiv preprint arXiv:2207.07605 (2022) Chen, H., Covert, I.C., Lundberg, S.M., Lee, S.I.: Algorithms to estimate shapley value feature attributions. arXiv preprint arXiv:​2207.​07605 (2022)
8.
go back to reference Chen, T., Shang, H., Bi, Q.: A prediction method of five-axis machine tool energy consumption with GBRT algorithm. In: 2019 IEEE 5th International Conference on Mechatronics System and Robots (ICMSR), pp. 34–39. IEEE (2019) Chen, T., Shang, H., Bi, Q.: A prediction method of five-axis machine tool energy consumption with GBRT algorithm. In: 2019 IEEE 5th International Conference on Mechatronics System and Robots (ICMSR), pp. 34–39. IEEE (2019)
9.
go back to reference Chen, X., Van Hillegersberg, J., Topan, E., Smith, S., Roberts, M.: Application of data-driven models to predictive maintenance: Bearing wear prediction at TATA steel. Expert Syst. Appl. 186, 115699 (2021)CrossRef Chen, X., Van Hillegersberg, J., Topan, E., Smith, S., Roberts, M.: Application of data-driven models to predictive maintenance: Bearing wear prediction at TATA steel. Expert Syst. Appl. 186, 115699 (2021)CrossRef
10.
go back to reference Draper, N.R., Smith, H.: Applied Regression Analysis, vol. 326. Wiley, Hoboken (1998) Draper, N.R., Smith, H.: Applied Regression Analysis, vol. 326. Wiley, Hoboken (1998)
11.
go back to reference Faraway, J.J.: Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. CRC Press, Boca Raton (2016) Faraway, J.J.: Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. CRC Press, Boca Raton (2016)
12.
go back to reference Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001) Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)
13.
go back to reference Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)CrossRef Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)CrossRef
16.
go back to reference Kutschenreiter-Praszkiewicz, I.: Machine learning in SMED. J. Mach. Eng. 18(2), 31–40 (2018)CrossRef Kutschenreiter-Praszkiewicz, I.: Machine learning in SMED. J. Mach. Eng. 18(2), 31–40 (2018)CrossRef
17.
go back to reference Lampathaki, F., Agostinho, C., Glikman, Y., Sesana, M.: Moving from ‘black box’ to ‘glass box’ artificial intelligence in manufacturing with XMANAI. In: 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–6. IEEE (2021) Lampathaki, F., Agostinho, C., Glikman, Y., Sesana, M.: Moving from ‘black box’ to ‘glass box’ artificial intelligence in manufacturing with XMANAI. In: 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–6. IEEE (2021)
18.
go back to reference Mawson, V.J., Hughes, B.R.: Coupling simulation with artificial neural networks for the optimisation of HVAC controls in manufacturing environments. Optim. Eng. 22, 103–119 (2021)CrossRef Mawson, V.J., Hughes, B.R.: Coupling simulation with artificial neural networks for the optimisation of HVAC controls in manufacturing environments. Optim. Eng. 22, 103–119 (2021)CrossRef
19.
go back to reference Pierleoni, P., Belli, A., Palma, L., Palmucci, M., Sabbatini, L.: A machine vision system for manual assembly line monitoring. In: 2020 International Conference on Intelligent Engineering and Management (ICIEM), pp. 33–38. IEEE (2020) Pierleoni, P., Belli, A., Palma, L., Palmucci, M., Sabbatini, L.: A machine vision system for manual assembly line monitoring. In: 2020 International Conference on Intelligent Engineering and Management (ICIEM), pp. 33–38. IEEE (2020)
20.
go back to reference Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014) Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)
21.
go back to reference Quinlan, J.R., et al.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, vol. 92, pp. 343–348. World Scientific (1992) Quinlan, J.R., et al.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, vol. 92, pp. 343–348. World Scientific (1992)
22.
go back to reference Rodríguez, I., Nottensteiner, K., Leidner, D., Durner, M., Stulp, F., Albu-Schäffer, A.: Pattern recognition for knowledge transfer in robotic assembly sequence planning. IEEE Robot. Autom. Lett. 5(2), 3666–3673 (2020)CrossRef Rodríguez, I., Nottensteiner, K., Leidner, D., Durner, M., Stulp, F., Albu-Schäffer, A.: Pattern recognition for knowledge transfer in robotic assembly sequence planning. IEEE Robot. Autom. Lett. 5(2), 3666–3673 (2020)CrossRef
24.
go back to reference Serin, G., Gudelek, M.U., Ozbayoglu, A.M., Unver, H.O.: Estimation of parameters for the free-form machining with deep neural network. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2102–2111. IEEE (2017) Serin, G., Gudelek, M.U., Ozbayoglu, A.M., Unver, H.O.: Estimation of parameters for the free-form machining with deep neural network. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2102–2111. IEEE (2017)
25.
go back to reference Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)MathSciNetCrossRef Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)MathSciNetCrossRef
26.
go back to reference Wicaksono, H.: An integrated method for information and communication technology (ICT) supported energy efficiency evaluation and optimization in manufacturing: knowledge-based approach and energy performance indicators (EnPI) to support evaluation and optimization of energy efficiency. Ph.D. thesis, Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), 2016 (2016) Wicaksono, H.: An integrated method for information and communication technology (ICT) supported energy efficiency evaluation and optimization in manufacturing: knowledge-based approach and energy performance indicators (EnPI) to support evaluation and optimization of energy efficiency. Ph.D. thesis, Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), 2016 (2016)
27.
go back to reference worldsteel: Energy use in the steel industry. Technical report, worldsteel (2016) worldsteel: Energy use in the steel industry. Technical report, worldsteel (2016)
28.
go back to reference Yoo, H., Park, D.: AI-based 3D food printing using standard composite materials. In: Data Science and Digital Transformation in the Fourth Industrial Revolution, pp. 123–135 (2021) Yoo, H., Park, D.: AI-based 3D food printing using standard composite materials. In: Data Science and Digital Transformation in the Fourth Industrial Revolution, pp. 123–135 (2021)
29.
go back to reference Zhang, C., Zheng, X.: Customization strategies between online and offline retailers. Omega 100, 102230 (2021)CrossRef Zhang, C., Zheng, X.: Customization strategies between online and offline retailers. Omega 100, 102230 (2021)CrossRef
30.
go back to reference Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)MathSciNetCrossRef Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)MathSciNetCrossRef
Metadata
Title
Power Consumption and Process Cost Prediction of Customized Products Using Explainable AI: A Case in the Steel Industry
Authors
Temirlan Aikenov
Rahmat Hidayat
Hendro Wicaksono
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_135

Premium Partner