Skip to main content
Top
Published in: Wireless Networks 2/2020

23-10-2018

Power optimization with low complexity using scaled beamforming approach for a massive MIMO and small cell scenario

Authors: Akhil Gupta, Rakesh Kumar Jha

Published in: Wireless Networks | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Present wireless generation is now evolving from 4G to 5G with a large number of clients. Researchers across the globe are working to sustain the quality of service level, while meeting the increasing demand of the clients. Since, the number of clients are increasing, which give arise to a lot of problems like increased interference, complexity and significant amount of power consumption in the processing and transmission. This paper investigates potential improvements in power optimization by modifying the classical macro-cell with massive multiple input multiple output at the mobile tower, which is overlaid with small cell access points. The main aim of the paper is to optimize the utilization of energy, while maintaining the quality of service at the client end and power optimization at the small cell access point, and base station. But along with power optimization, complexity is also a prime objective of concern. Hence for optimizing or minimizing the power, while maintaining low complexity, a new low complexity algorithm is proposed and is compared with a classical relaxed zero-forcing beam forming algorithm and the optimal solution cases. The complexity analysis of this proposed approach has been done on the basis of change in the base stations and the number of UEs surrounding it. The potential merits of this proposed approach for different deployment scenarios, such as an urban macro heterogeneous deployment scenario in the 3GPP LTE Standard and an urban macro, sub-urban macro, and rural macro deployment scenario in the ITU-R M.2135 standard are analyzed by numerical calculations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng, H. V., Persson, D., & Larsson, E. G. (2014). MIMO capacity under power amplifiers consumed power and per-antenna radiated power constraints. In 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp.179–183), 22–25 June 2014. Cheng, H. V., Persson, D., & Larsson, E. G. (2014). MIMO capacity under power amplifiers consumed power and per-antenna radiated power constraints. In 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp.179–183), 22–25 June 2014.
2.
go back to reference Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications,10(6), 585–596.MathSciNetCrossRef Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications,10(6), 585–596.MathSciNetCrossRef
3.
go back to reference Zheng, X., Xie, Y., Li, J., & Stoica, P. (2007). MIMO transmit beamforming under uniform elemental power constraint. IEEE Transactions on Signal Processing,55(11), 5395–5406.MathSciNetCrossRef Zheng, X., Xie, Y., Li, J., & Stoica, P. (2007). MIMO transmit beamforming under uniform elemental power constraint. IEEE Transactions on Signal Processing,55(11), 5395–5406.MathSciNetCrossRef
4.
go back to reference Vu, M. (2012). MIMO capacity with per-antenna power constraint. In 2011 IEEE Global Telecommunications Conference—GLOBECOM 2011, Kathmandu (pp. 1–5), January 2012. Vu, M. (2012). MIMO capacity with per-antenna power constraint. In 2011 IEEE Global Telecommunications Conference—GLOBECOM 2011, Kathmandu (pp. 1–5), January 2012.
6.
go back to reference Dohler, M., Heath, R., Lozano, A., Papadias, C., & Valenzuela, R. (2011). Is the PHY layer dead? IEEE Communications Magazine,49(4), 159–165.CrossRef Dohler, M., Heath, R., Lozano, A., Papadias, C., & Valenzuela, R. (2011). Is the PHY layer dead? IEEE Communications Magazine,49(4), 159–165.CrossRef
7.
go back to reference Fettweis, G., Lohning, M., Petrovic, D., Windisch, M., Zillmann, P., & Rave, W. (2005). Dirty RF: A new paradigm. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,4, 2347–2355. Fettweis, G., Lohning, M., Petrovic, D., Windisch, M., Zillmann, P., & Rave, W. (2005). Dirty RF: A new paradigm. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,4, 2347–2355.
8.
go back to reference He, A., Srikanteswara, S., Bae, K. K., Newman, T., Reed, J., Tranter, W., et al. (2011). Power consumption minimization for MIMO systems—A cognitive radio approach. IEEE Journal on Selected Areas in Communications,29(2), 469–479.CrossRef He, A., Srikanteswara, S., Bae, K. K., Newman, T., Reed, J., Tranter, W., et al. (2011). Power consumption minimization for MIMO systems—A cognitive radio approach. IEEE Journal on Selected Areas in Communications,29(2), 469–479.CrossRef
9.
go back to reference Persson, D., Eriksson, T., & Larsson, E. G. (2014). Amplifier-aware multiple-input single-output capacity. IEEE Transactions on Communications,62(3), 913–919.CrossRef Persson, D., Eriksson, T., & Larsson, E. G. (2014). Amplifier-aware multiple-input single-output capacity. IEEE Transactions on Communications,62(3), 913–919.CrossRef
10.
go back to reference Persson, D., Eriksson, T., & Larsson, E. G. (2013). Amplifier-aware multiple-input multiple-output power allocation. IEEE Communications Letters,17(6), 1112–1115.CrossRef Persson, D., Eriksson, T., & Larsson, E. G. (2013). Amplifier-aware multiple-input multiple-output power allocation. IEEE Communications Letters,17(6), 1112–1115.CrossRef
11.
go back to reference Rusek, F., Persson, D., Lau, B., Larsson, E., Marzetta, T., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine,30(1), 40–60.CrossRef Rusek, F., Persson, D., Lau, B., Larsson, E., Marzetta, T., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine,30(1), 40–60.CrossRef
12.
go back to reference Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communication,31(2), 160–171.CrossRef Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communication,31(2), 160–171.CrossRef
13.
go back to reference Parkvall, S., Dahlman, E., Jöngren, G., Landström, S., & Lindbom, L. (2011). Heterogeneous network deployments in LTE—The soft-cell approach. Ericsson Review, no. 2, 2011. Parkvall, S., Dahlman, E., Jöngren, G., Landström, S., & Lindbom, L. (2011). Heterogeneous network deployments in LTE—The soft-cell approach. Ericsson Review, no. 2, 2011.
14.
go back to reference Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine,6(1), 37–43.CrossRef Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine,6(1), 37–43.CrossRef
15.
go back to reference Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transaction on Wireless Communication,9(11), 3590–3600.CrossRef Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transaction on Wireless Communication,9(11), 3590–3600.CrossRef
16.
go back to reference Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transaction on Communication,61(4), 1436–1449.CrossRef Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transaction on Communication,61(4), 1436–1449.CrossRef
17.
go back to reference Hsieh, H. Y., Wei, S. E., & Chien, C. P. (2014). Optimizing small cell deployment in arbitrary wireless networks with minimum service rate constraints. IEEE Transactions on Mobile Computing,13(8), 1801–1815.CrossRef Hsieh, H. Y., Wei, S. E., & Chien, C. P. (2014). Optimizing small cell deployment in arbitrary wireless networks with minimum service rate constraints. IEEE Transactions on Mobile Computing,13(8), 1801–1815.CrossRef
18.
go back to reference Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access,3, 1206–1232.CrossRef Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access,3, 1206–1232.CrossRef
19.
go back to reference Björnson, E., Larsson, E. G., & Marzetta, T. L. (2016). Massive MIMO: Ten myths and one critical question. IEEE Communication Magazine,54(2), 114–123.CrossRef Björnson, E., Larsson, E. G., & Marzetta, T. L. (2016). Massive MIMO: Ten myths and one critical question. IEEE Communication Magazine,54(2), 114–123.CrossRef
20.
go back to reference Liu, P., Jin, S., Jiang, T., Zhang, Q., & Matthaiou, M. (2017). Pilot power allocation through user grouping in multi-cell massive MIMO systems. IEEE Transaction on Communication,65(4), 1561–1574.CrossRef Liu, P., Jin, S., Jiang, T., Zhang, Q., & Matthaiou, M. (2017). Pilot power allocation through user grouping in multi-cell massive MIMO systems. IEEE Transaction on Communication,65(4), 1561–1574.CrossRef
21.
go back to reference Björnson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transaction on Wireless Communication,14(6), 3059–3075.CrossRef Björnson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transaction on Wireless Communication,14(6), 3059–3075.CrossRef
23.
go back to reference Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2018). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications,66(4), 1705–1716.CrossRef Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2018). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications,66(4), 1705–1716.CrossRef
24.
go back to reference Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. M. (2018). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications,17(3), 1882–1892.CrossRef Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. M. (2018). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications,17(3), 1882–1892.CrossRef
25.
go back to reference Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications,16(2), 730–743.CrossRef Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications,16(2), 730–743.CrossRef
26.
go back to reference Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications,35(9), 1936–1947.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications,35(9), 1936–1947.CrossRef
27.
go back to reference Zhang, H., Liu, N., Long, K., Cheng, J., Leung, V. C. M., & Hanzo, L. (2018). Energy efficient subchannel and power allocation for software-defined heterogeneous VLC and RF networks. IEEE Journal on Selected Areas in Communications,36(3), 658–670.CrossRef Zhang, H., Liu, N., Long, K., Cheng, J., Leung, V. C. M., & Hanzo, L. (2018). Energy efficient subchannel and power allocation for software-defined heterogeneous VLC and RF networks. IEEE Journal on Selected Areas in Communications,36(3), 658–670.CrossRef
28.
go back to reference Holma, H., & Toskala, A. (2012). LTE advanced: 3GPP solution for IMT advanced (1st ed.). New York: Wiley.CrossRef Holma, H., & Toskala, A. (2012). LTE advanced: 3GPP solution for IMT advanced (1st ed.). New York: Wiley.CrossRef
29.
go back to reference Bjornson, E., Jaldén, N., Bengtsson, M., & Ottersten, B. (2011). Optimality properties, distributed strategies, and measurement-based evaluation of coordinated multicell OFDMA transmission. IEEE Transaction on Signal Processing,59(12), 6086–6101.MathSciNetCrossRef Bjornson, E., Jaldén, N., Bengtsson, M., & Ottersten, B. (2011). Optimality properties, distributed strategies, and measurement-based evaluation of coordinated multicell OFDMA transmission. IEEE Transaction on Signal Processing,59(12), 6086–6101.MathSciNetCrossRef
30.
go back to reference Cui, S., Goldsmith, A., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transaction on Wireless Communication,4(5), 2349–2360.CrossRef Cui, S., Goldsmith, A., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transaction on Wireless Communication,4(5), 2349–2360.CrossRef
31.
go back to reference Auer, G., Blume, O., Giannini, V., Godor, I., Imran, M., Jading, Y., et al. (2012). D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. INFSO-ICT-247733 EARTH, ver. 2.0. Auer, G., Blume, O., Giannini, V., Godor, I., Imran, M., Jading, Y., et al. (2012). D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. INFSO-ICT-247733 EARTH, ver. 2.0.
32.
go back to reference Ng, D., Lo, E., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transaction on Wireless Communication,11(9), 3292–3304.CrossRef Ng, D., Lo, E., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transaction on Wireless Communication,11(9), 3292–3304.CrossRef
33.
go back to reference Bengtsson, M., & Ottersten, B. (2001). Optimal and suboptimal transmit beamforming. In L. C. Godara (Ed.), Handbook of antennas in wireless communications. Boca Raton: CRC Press. Bengtsson, M., & Ottersten, B. (2001). Optimal and suboptimal transmit beamforming. In L. C. Godara (Ed.), Handbook of antennas in wireless communications. Boca Raton: CRC Press.
34.
go back to reference Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRef Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRef
35.
go back to reference Björnson, E., & Jorswieck, E. (2013). Optimal resource allocation in coordinated multi-cell systems. Foundations and Trends in Communications and Information Theory,9(2–3), 113–381.CrossRef Björnson, E., & Jorswieck, E. (2013). Optimal resource allocation in coordinated multi-cell systems. Foundations and Trends in Communications and Information Theory,9(2–3), 113–381.CrossRef
36.
go back to reference Bjornson, E., Kountouris, M., & Debbah, M. (2013). Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination. In 2013 20th International Conference on Telecommunications (ICT) (pp. 1–8). Bjornson, E., Kountouris, M., & Debbah, M. (2013). Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination. In 2013 20th International Conference on Telecommunications (ICT) (pp. 1–8).
37.
go back to reference Park, J., Lee, G., Sung, Y., & Yukawa, M. (2013). Coordinated beamforming with relaxed zero forcing: the sequential orthogonal projection combining method and rate control. IEEE Transactions on Signal Processing,61(12), 3100–3112.CrossRef Park, J., Lee, G., Sung, Y., & Yukawa, M. (2013). Coordinated beamforming with relaxed zero forcing: the sequential orthogonal projection combining method and rate control. IEEE Transactions on Signal Processing,61(12), 3100–3112.CrossRef
38.
go back to reference Further advancements for E-UTRA physical layer aspects (Release 12). 3GPP TS 36.942 (2014). Further advancements for E-UTRA physical layer aspects (Release 12). 3GPP TS 36.942 (2014).
39.
go back to reference Series, M. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced. ITU: Technical report. Series, M. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced. ITU: Technical report.
40.
go back to reference Dong, W., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Cluster identification and properties of outdoor wideband MIMO channel. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 829–833), September 30, 2007–October 3, 2007. Dong, W., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Cluster identification and properties of outdoor wideband MIMO channel. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 829–833), September 30, 2007–October 3, 2007.
41.
go back to reference Lu, Y., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Outdoor-indoor propagation characteristics of peer-to-peer system at 5.25 GHz. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 869–873), September 30, 2007-October 3, 2007. Lu, Y., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (2007). Outdoor-indoor propagation characteristics of peer-to-peer system at 5.25 GHz. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 869–873), September 30, 2007-October 3, 2007.
42.
go back to reference Xu, D., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (3007). Indoor office propagation measurements and path loss models at 5.25 GHz. IN Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 844–848), September 30, 2007-October 3, 2007. Xu, D., Zhang, J., Gao, X., Zhang, P., & Wu, Y. (3007). Indoor office propagation measurements and path loss models at 5.25 GHz. IN Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 844–848), September 30, 2007-October 3, 2007.
43.
go back to reference Zhang, J., Gao, X., Zhang, P., & Yin, X. (2007). Propagation characteristics of wideband MIMO channel in hotspot areas at 5.25 GHZ. In IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007 (pp. 1, 5, 3–7) September 2007. Zhang, J., Gao, X., Zhang, P., & Yin, X. (2007). Propagation characteristics of wideband MIMO channel in hotspot areas at 5.25 GHZ. In IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007 (pp. 1, 5, 3–7) September 2007.
44.
go back to reference Zhang, J., Dong, D., Liang, Y., Nie, X., Gao, X., Zhang, Y., Huang, C., & Liu, G. (2008). Propagation characteristics of wideband MIMO channel in urban micro- and macrocells. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008 (pp. 1, 6, 15–18). Zhang, J., Dong, D., Liang, Y., Nie, X., Gao, X., Zhang, Y., Huang, C., & Liu, G. (2008). Propagation characteristics of wideband MIMO channel in urban micro- and macrocells. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008 (pp. 1, 6, 15–18).
45.
go back to reference Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software,11–12, 625–653.MathSciNetCrossRef Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software,11–12, 625–653.MathSciNetCrossRef
47.
go back to reference Gupta, A., & Jha, R. K. (2016). Power optimization using massive MIMO and small cells approach in different deployment scenarios. Wireless Networks,23, 959–973.CrossRef Gupta, A., & Jha, R. K. (2016). Power optimization using massive MIMO and small cells approach in different deployment scenarios. Wireless Networks,23, 959–973.CrossRef
Metadata
Title
Power optimization with low complexity using scaled beamforming approach for a massive MIMO and small cell scenario
Authors
Akhil Gupta
Rakesh Kumar Jha
Publication date
23-10-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1856-3

Other articles of this Issue 2/2020

Wireless Networks 2/2020 Go to the issue