Skip to main content
Top

2022 | OriginalPaper | Chapter

2. Power-to-X for Renewable-Based Hybrid Energy Systems

Authors : Sahar Davoudi, Amirhosein Khalili-Garakani, Kazem Kashefi

Published in: Whole Energy Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development of renewable energy infrastructure and technologies is accelerating. One of the main concerns in renewable electricity production is the emergence of generation intermittency and fluctuation along with existing load variability. Power-to-X could play a critical role in providing many technological methods to handle power supplies with the consistency and reliability of future energy systems. A comprehensive investigation of the various power-to-X technologies is provided in this chapter, which could be utilized to integrate the benefits of renewable energies whereas avoiding the limitations when used alone. As well, the latest advances in PtX technologies are investigated and discussed in detail since limitations must be overcome to implement infrastructures around the world.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Van de Krol, R., & Grätzel, M. (2012). Photoelectrochemical hydrogen production. Springer.CrossRef Van de Krol, R., & Grätzel, M. (2012). Photoelectrochemical hydrogen production. Springer.CrossRef
2.
go back to reference Khalilpour, K. R. (2019). Interconnected electricity and natural gas supply chains: The roles of power to gas and gas to power. In Polygeneration with Polystorage for chemical and energy hubs (pp. 133–155). Elsevier.CrossRef Khalilpour, K. R. (2019). Interconnected electricity and natural gas supply chains: The roles of power to gas and gas to power. In Polygeneration with Polystorage for chemical and energy hubs (pp. 133–155). Elsevier.CrossRef
3.
go back to reference Koj, J. C., Wulf, C., & Zapp, P. (2019). Environmental impacts of power-to-X systems-a review of technological and methodological choices in life cycle assessments. Renewable and Sustainable Energy Reviews, 112, 865–879.CrossRef Koj, J. C., Wulf, C., & Zapp, P. (2019). Environmental impacts of power-to-X systems-a review of technological and methodological choices in life cycle assessments. Renewable and Sustainable Energy Reviews, 112, 865–879.CrossRef
4.
go back to reference Fuss, S., et al. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853.CrossRef Fuss, S., et al. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853.CrossRef
5.
go back to reference Pleßmann, G., Erdmann, M., Hlusiak, M., & Breyer, C. (2014). Global energy storage demand for a 100% renewable electricity supply. Energy Procedia, 46(0), 22–31.CrossRef Pleßmann, G., Erdmann, M., Hlusiak, M., & Breyer, C. (2014). Global energy storage demand for a 100% renewable electricity supply. Energy Procedia, 46(0), 22–31.CrossRef
6.
go back to reference Bosman, A., & Van Daal, H. (1970). Small-polaron versus band conduction in some transition-metal oxides. Advances in Physics, 19(77), 1–117.CrossRef Bosman, A., & Van Daal, H. (1970). Small-polaron versus band conduction in some transition-metal oxides. Advances in Physics, 19(77), 1–117.CrossRef
7.
go back to reference de Rego Vasconcelos, B., & Lavoie, J.-M. (2019). Recent advances in power-to-X technology for the production of fuels and chemicals. Frontiers in Chemistry, 7, 392.CrossRef de Rego Vasconcelos, B., & Lavoie, J.-M. (2019). Recent advances in power-to-X technology for the production of fuels and chemicals. Frontiers in Chemistry, 7, 392.CrossRef
8.
go back to reference Buffo, G., Ferrero, D., Santarelli, M., & Lanzini, A. (2019). Reversible solid oxide cell (ReSOC) as flexible polygeneration plant integrated with CO2 capture and reuse. E3S Web of Conferences, 113, 02009. EDP Sciences.CrossRef Buffo, G., Ferrero, D., Santarelli, M., & Lanzini, A. (2019). Reversible solid oxide cell (ReSOC) as flexible polygeneration plant integrated with CO2 capture and reuse. E3S Web of Conferences, 113, 02009. EDP Sciences.CrossRef
9.
go back to reference Bailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292–312.CrossRef Bailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292–312.CrossRef
10.
go back to reference Schnuelle, C., Thoeming, J., Wassermann, T., Thier, P., von Gleich, A., & Goessling-Reisemann, S. (2019). Socio-technical-economic assessment of power-to-X: Potentials and limitations for an integration into the German energy system. Energy Research & Social Science, 51, 187–197.CrossRef Schnuelle, C., Thoeming, J., Wassermann, T., Thier, P., von Gleich, A., & Goessling-Reisemann, S. (2019). Socio-technical-economic assessment of power-to-X: Potentials and limitations for an integration into the German energy system. Energy Research & Social Science, 51, 187–197.CrossRef
11.
go back to reference Storage, E. E. (2011). International Electrotechnical Commission (IEC). White Paper, Geneva, Switzerland. Storage, E. E. (2011). International Electrotechnical Commission (IEC). White Paper, Geneva, Switzerland.
12.
go back to reference Daiyan, R., MacGill, I., & Amal, R. (2020). Opportunities and challenges for renewable power-to-X. ACS Publications.CrossRef Daiyan, R., MacGill, I., & Amal, R. (2020). Opportunities and challenges for renewable power-to-X. ACS Publications.CrossRef
13.
go back to reference Buffo, G., Marocco, P., Ferrero, D., Lanzini, A., & Santarelli, M. (2019). Power-to-X and power-to-power routes. In Solar hydrogen production (pp. 529–557). Elsevier.CrossRef Buffo, G., Marocco, P., Ferrero, D., Lanzini, A., & Santarelli, M. (2019). Power-to-X and power-to-power routes. In Solar hydrogen production (pp. 529–557). Elsevier.CrossRef
14.
go back to reference Vázquez, F. V., et al. (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 28, 235–246.CrossRef Vázquez, F. V., et al. (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 28, 235–246.CrossRef
15.
go back to reference Gür, T. M. (2018). Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11(10), 2696–2767.CrossRef Gür, T. M. (2018). Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11(10), 2696–2767.CrossRef
16.
go back to reference Buttler, A., & Spliethoff, H. (2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, 82, 2440–2454.CrossRef Buttler, A., & Spliethoff, H. (2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, 82, 2440–2454.CrossRef
17.
go back to reference Sternberg, A., & Bardow, A. (2015). Power-to-what?–environmental assessment of energy storage systems. Energy & Environmental Science, 8(2), 389–400.CrossRef Sternberg, A., & Bardow, A. (2015). Power-to-what?–environmental assessment of energy storage systems. Energy & Environmental Science, 8(2), 389–400.CrossRef
18.
go back to reference Naims, H. (2016). Economics of carbon dioxide capture and utilization—A supply and demand perspective. Environmental Science and Pollution Research, 23(22), 22226–22241.CrossRef Naims, H. (2016). Economics of carbon dioxide capture and utilization—A supply and demand perspective. Environmental Science and Pollution Research, 23(22), 22226–22241.CrossRef
19.
go back to reference Wulf, C., Linssen, J., & Zapp, P. (2018). Power-to-gas—Concepts, demonstration, and prospects. In Hydrogen supply chains (pp. 309–345). Elsevier.CrossRef Wulf, C., Linssen, J., & Zapp, P. (2018). Power-to-gas—Concepts, demonstration, and prospects. In Hydrogen supply chains (pp. 309–345). Elsevier.CrossRef
20.
go back to reference Lewandowska-Bernat, A., & Desideri, U. (2017). Opportunities of power-to-gas technology. Energy Procedia, 105, 4569–4574.CrossRef Lewandowska-Bernat, A., & Desideri, U. (2017). Opportunities of power-to-gas technology. Energy Procedia, 105, 4569–4574.CrossRef
21.
go back to reference Kumar, S. S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–a review. Materials Science for Energy Technologies, 2(3), 442–454.CrossRef Kumar, S. S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–a review. Materials Science for Energy Technologies, 2(3), 442–454.CrossRef
22.
go back to reference Rajeshwar, K., McConnell, R., & Licht, S. (2008). Solar hydrogen generation. Springer.CrossRef Rajeshwar, K., McConnell, R., & Licht, S. (2008). Solar hydrogen generation. Springer.CrossRef
23.
go back to reference Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39(3), 390–394.CrossRef Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39(3), 390–394.CrossRef
24.
go back to reference Acar, C., & Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 39(1), 1–12.CrossRef Acar, C., & Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 39(1), 1–12.CrossRef
25.
go back to reference Lee, B., et al. (2018). Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Conversion and Management, 162, 139–144.CrossRef Lee, B., et al. (2018). Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Conversion and Management, 162, 139–144.CrossRef
26.
go back to reference Borgschulte, A. (2016). The hydrogen grand challenge. Frontiers in Energy Research, 4, 11.CrossRef Borgschulte, A. (2016). The hydrogen grand challenge. Frontiers in Energy Research, 4, 11.CrossRef
27.
go back to reference Ferreira-Aparicio, P., Benito, M., & Sanz, J. (2005). New trends in reforming technologies: From hydrogen industrial plants to multifuel microreformers. Catalysis Reviews, 47(4), 491–588.CrossRef Ferreira-Aparicio, P., Benito, M., & Sanz, J. (2005). New trends in reforming technologies: From hydrogen industrial plants to multifuel microreformers. Catalysis Reviews, 47(4), 491–588.CrossRef
28.
go back to reference Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934.CrossRef Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934.CrossRef
29.
go back to reference Rashid, M. M., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, 4(3), 2249–8958. Rashid, M. M., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, 4(3), 2249–8958.
30.
go back to reference Damyanova, S., Pawelec, B., Arishtirova, K., & Fierro, J. (2012). Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 37(21), 15966–15975.CrossRef Damyanova, S., Pawelec, B., Arishtirova, K., & Fierro, J. (2012). Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 37(21), 15966–15975.CrossRef
31.
go back to reference Iida, S., & Sakata, K. (2019). Hydrogen technologies and developments in Japan. Clean Energy, 3(2), 105–113.CrossRef Iida, S., & Sakata, K. (2019). Hydrogen technologies and developments in Japan. Clean Energy, 3(2), 105–113.CrossRef
32.
go back to reference Bruce, S., et al. (2018). National hydrogen roadmap. CSIRO. Bruce, S., et al. (2018). National hydrogen roadmap. CSIRO.
33.
go back to reference FCH, J. (2019). Hydrogen roadmap Europe: A sustainable pathway for the European energy transition. Bietlot. FCH, J. (2019). Hydrogen roadmap Europe: A sustainable pathway for the European energy transition. Bietlot.
34.
go back to reference Baccioli, A., et al. (2020). Cost effective power-to-X plant using carbon dioxide from a geothermal plant to increase renewable energy penetration. Energy Conversion and Management, 226, 113494.CrossRef Baccioli, A., et al. (2020). Cost effective power-to-X plant using carbon dioxide from a geothermal plant to increase renewable energy penetration. Energy Conversion and Management, 226, 113494.CrossRef
35.
go back to reference Lehner, M., Tichler, R., Steinmüller, H., & Koppe, M. (2014). Power-to-gas: Technology and business models. Springer. Lehner, M., Tichler, R., Steinmüller, H., & Koppe, M. (2014). Power-to-gas: Technology and business models. Springer.
36.
go back to reference Dhabi, A. (2017). Geothermal power: Technology brief. IRENA. Dhabi, A. (2017). Geothermal power: Technology brief. IRENA.
37.
go back to reference Tractebel, H. (2017). Study of early business cases for H2 in energy Storage and more broadly power to H2 applications. In Fuel Cells and Hydrogen Joint Undertaking (FCH JU): Brussels, Belgium. Tractebel, H. (2017). Study of early business cases for H2 in energy Storage and more broadly power to H2 applications. In Fuel Cells and Hydrogen Joint Undertaking (FCH JU): Brussels, Belgium.
38.
go back to reference Dresp, S. R., Dionigi, F., Klingenhof, M., & Strasser, P. (2019). Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Letters, 4(4), 933–942.CrossRef Dresp, S. R., Dionigi, F., Klingenhof, M., & Strasser, P. (2019). Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Letters, 4(4), 933–942.CrossRef
39.
go back to reference Paudel, S., Kang, Y., Yoo, Y.-S., & Seo, G. T. (2015). Hydrogen production in the anaerobic treatment of domestic-grade synthetic wastewater. Sustainability, 7(12), 16260–16272.CrossRef Paudel, S., Kang, Y., Yoo, Y.-S., & Seo, G. T. (2015). Hydrogen production in the anaerobic treatment of domestic-grade synthetic wastewater. Sustainability, 7(12), 16260–16272.CrossRef
40.
go back to reference Leaver, J. D., Gillingham, K. T., & Leaver, L. H. (2009). Assessment of primary impacts of a hydrogen economy in New Zealand using UniSyD. International Journal of Hydrogen Energy, 34(7), 2855–2865.CrossRef Leaver, J. D., Gillingham, K. T., & Leaver, L. H. (2009). Assessment of primary impacts of a hydrogen economy in New Zealand using UniSyD. International Journal of Hydrogen Energy, 34(7), 2855–2865.CrossRef
41.
go back to reference Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 33(15), 4013–4029.CrossRef Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 33(15), 4013–4029.CrossRef
42.
go back to reference Cipriani, G., et al. (2014). Perspective on hydrogen energy carrier and its automotive applications. International Journal of Hydrogen Energy, 39(16), 8482–8494.CrossRef Cipriani, G., et al. (2014). Perspective on hydrogen energy carrier and its automotive applications. International Journal of Hydrogen Energy, 39(16), 8482–8494.CrossRef
43.
go back to reference Hermesmann, M., Grübel, K., Scherotzki, L., & Müller, T. Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen. Renewable and Sustainable Energy Reviews, 138, 110644. Hermesmann, M., Grübel, K., Scherotzki, L., & Müller, T. Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen. Renewable and Sustainable Energy Reviews, 138, 110644.
44.
45.
go back to reference Ursua, A., Gandia, L. M., & Sanchis, P. (2011). Hydrogen production from water electrolysis: Current status and future trends. Proceedings of the IEEE, 100(2), 410–426.CrossRef Ursua, A., Gandia, L. M., & Sanchis, P. (2011). Hydrogen production from water electrolysis: Current status and future trends. Proceedings of the IEEE, 100(2), 410–426.CrossRef
46.
go back to reference Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.CrossRef Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.CrossRef
47.
go back to reference Yan, X. L., & Hino, R. (2016). Nuclear hydrogen production handbook. CRC press.CrossRef Yan, X. L., & Hino, R. (2016). Nuclear hydrogen production handbook. CRC press.CrossRef
49.
go back to reference Götz, M., et al. (2016). Renewable power-to-gas: A technological and economic review. Renewable Energy, 85, 1371–1390.CrossRef Götz, M., et al. (2016). Renewable power-to-gas: A technological and economic review. Renewable Energy, 85, 1371–1390.CrossRef
50.
go back to reference Steinmüller, H., Tichler, R., & Reiter, G. (2014). Power-to-gas–eine Systemanalyse. In Markt-und Technologiescouting und–analyse. Energieinstitut an der Johannes Kepler Universität Linz, TU Wien, MU Leoben, JKU Linz. Steinmüller, H., Tichler, R., & Reiter, G. (2014). Power-to-gas–eine Systemanalyse. In Markt-und Technologiescouting und–analyse. Energieinstitut an der Johannes Kepler Universität Linz, TU Wien, MU Leoben, JKU Linz.
51.
go back to reference Shiva Kumar, S., Ramakrishna, S., Srinivasulu Reddy, D., Bhagawan, D., & Himabindu, V. (2017). Synthesis of polysulfone and zirconium oxide coated asbestos composite separators for alkaline water electrolysis. Journal of Chemical Engineering & Process Technology, 3(1035), 1–1035. Shiva Kumar, S., Ramakrishna, S., Srinivasulu Reddy, D., Bhagawan, D., & Himabindu, V. (2017). Synthesis of polysulfone and zirconium oxide coated asbestos composite separators for alkaline water electrolysis. Journal of Chemical Engineering & Process Technology, 3(1035), 1–1035.
52.
go back to reference Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307–326.CrossRef Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307–326.CrossRef
53.
go back to reference Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 42(52), 30470–30492.CrossRef Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 42(52), 30470–30492.CrossRef
54.
go back to reference Coutanceau, C., Baranton, S., & Audichon, T. (2018). Hydrogen production from water electrolysis. Hydrogen Electrochemical Production, 17–62. Coutanceau, C., Baranton, S., & Audichon, T. (2018). Hydrogen production from water electrolysis. Hydrogen Electrochemical Production, 17–62.
55.
go back to reference Russell, J., Nuttall, L., & Fickett, A. (1973). Hydrogen generation by solid polymer electrolyte water electrolysis. American Chemical Society and Division of Fuel Chemistry Preprints, 18, 24–40. Russell, J., Nuttall, L., & Fickett, A. (1973). Hydrogen generation by solid polymer electrolyte water electrolysis. American Chemical Society and Division of Fuel Chemistry Preprints, 18, 24–40.
56.
go back to reference Martinson, C. A., Van Schoor, G., Uren, K., & Bessarabov, D. (2014). Characterisation of a PEM electrolyser using the current interrupt method. International Journal of Hydrogen Energy, 39(36), 20865–20878.CrossRef Martinson, C. A., Van Schoor, G., Uren, K., & Bessarabov, D. (2014). Characterisation of a PEM electrolyser using the current interrupt method. International Journal of Hydrogen Energy, 39(36), 20865–20878.CrossRef
57.
go back to reference Grigor’ev, S., Khaliullin, M., Kuleshov, N., & Fateev, V. (2001). Electrolysis of water in a system with a solid polymer electrolyte at elevated pressure. Russian Journal of Electrochemistry, 37(8), 819–822.CrossRef Grigor’ev, S., Khaliullin, M., Kuleshov, N., & Fateev, V. (2001). Electrolysis of water in a system with a solid polymer electrolyte at elevated pressure. Russian Journal of Electrochemistry, 37(8), 819–822.CrossRef
58.
go back to reference Millet, P., Ngameni, R., Grigoriev, S., & Fateev, V. (2011). Scientific and engineering issues related to PEM technology: Water electrolysers, fuel cells and unitized regenerative systems. International Journal of Hydrogen Energy, 36(6), 4156–4163.CrossRef Millet, P., Ngameni, R., Grigoriev, S., & Fateev, V. (2011). Scientific and engineering issues related to PEM technology: Water electrolysers, fuel cells and unitized regenerative systems. International Journal of Hydrogen Energy, 36(6), 4156–4163.CrossRef
59.
go back to reference Giovanni, C. D., et al. (2016). Low-cost nanostructured iron sulfide electrocatalysts for PEM water electrolysis. ACS Catalysis, 6(4), 2626–2631.CrossRef Giovanni, C. D., et al. (2016). Low-cost nanostructured iron sulfide electrocatalysts for PEM water electrolysis. ACS Catalysis, 6(4), 2626–2631.CrossRef
60.
go back to reference Datta, M. K., et al. (2013). High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis. Journal of Materials Chemistry A, 1(12), 4026–4037.CrossRef Datta, M. K., et al. (2013). High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis. Journal of Materials Chemistry A, 1(12), 4026–4037.CrossRef
61.
go back to reference Brisse, A., Schefold, J., & Zahid, M. (2008). High temperature water electrolysis in solid oxide cells. International Journal of Hydrogen Energy, 33(20), 5375–5382.CrossRef Brisse, A., Schefold, J., & Zahid, M. (2008). High temperature water electrolysis in solid oxide cells. International Journal of Hydrogen Energy, 33(20), 5375–5382.CrossRef
62.
go back to reference Huynh, H. L., & Yu, Z. (2020). CO2 Methanation on Hydrotalcite-derived catalysts and structured reactors: A review. Energy Technology, 8(5), 1901475.CrossRef Huynh, H. L., & Yu, Z. (2020). CO2 Methanation on Hydrotalcite-derived catalysts and structured reactors: A review. Energy Technology, 8(5), 1901475.CrossRef
63.
go back to reference De Saint Jean, M., Baurens, P., Bouallou, C., & Couturier, K. (2015). Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis. International Journal of Hydrogen Energy, 40(20), 6487–6500.CrossRef De Saint Jean, M., Baurens, P., Bouallou, C., & Couturier, K. (2015). Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis. International Journal of Hydrogen Energy, 40(20), 6487–6500.CrossRef
64.
go back to reference Manthiram, K., Beberwyck, B. J., & Alivisatos, A. P. (2014). Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Journal of the American Chemical Society, 136(38), 13319–13325.CrossRef Manthiram, K., Beberwyck, B. J., & Alivisatos, A. P. (2014). Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Journal of the American Chemical Society, 136(38), 13319–13325.CrossRef
65.
go back to reference Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775–787.CrossRef Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775–787.CrossRef
66.
go back to reference Lewandowska-Bernat, A., & Desideri, U. (2018). Opportunities of power-to-gas technology in different energy systems architectures. Applied Energy, 228, 57–67.CrossRef Lewandowska-Bernat, A., & Desideri, U. (2018). Opportunities of power-to-gas technology in different energy systems architectures. Applied Energy, 228, 57–67.CrossRef
67.
go back to reference Machado, A. S. R., Nunes, A. V., & da Ponte, M. N. (2018). Carbon dioxide utilization—Electrochemical reduction to fuels and synthesis of polycarbonates. The Journal of Supercritical Fluids, 134, 150–156.CrossRef Machado, A. S. R., Nunes, A. V., & da Ponte, M. N. (2018). Carbon dioxide utilization—Electrochemical reduction to fuels and synthesis of polycarbonates. The Journal of Supercritical Fluids, 134, 150–156.CrossRef
68.
go back to reference Kaneco, S., Katsumata, H., Suzuki, T., & Ohta, K. (2006). Electrochemical reduction of CO2 to methane at the cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energy & Fuels, 20(1), 409–414.CrossRef Kaneco, S., Katsumata, H., Suzuki, T., & Ohta, K. (2006). Electrochemical reduction of CO2 to methane at the cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energy & Fuels, 20(1), 409–414.CrossRef
69.
go back to reference Taubner, R.-S., Schleper, C., Firneis, M. G., & Rittmann, S. K.-M. (2015). Assessing the ecophysiology of methanogens in the context of recent astrobiological and planetological studies. Life, 5(4), 1652–1686.CrossRef Taubner, R.-S., Schleper, C., Firneis, M. G., & Rittmann, S. K.-M. (2015). Assessing the ecophysiology of methanogens in the context of recent astrobiological and planetological studies. Life, 5(4), 1652–1686.CrossRef
70.
go back to reference Rittmann, S., Seifert, A., & Herwig, C. (2015). Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Critical Reviews in Biotechnology, 35(2), 141–151.CrossRef Rittmann, S., Seifert, A., & Herwig, C. (2015). Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Critical Reviews in Biotechnology, 35(2), 141–151.CrossRef
71.
go back to reference Van Dael, M., et al. (2018). Techno-economic assessment of a microbial power-to-gas plant–case study in Belgium. Applied Energy, 215, 416–425.CrossRef Van Dael, M., et al. (2018). Techno-economic assessment of a microbial power-to-gas plant–case study in Belgium. Applied Energy, 215, 416–425.CrossRef
72.
go back to reference Lecker, B., Illi, L., Lemmer, A., & Oechsner, H. (2017). Biological hydrogen methanation–a review. Bioresource Technology, 245, 1220–1228.CrossRef Lecker, B., Illi, L., Lemmer, A., & Oechsner, H. (2017). Biological hydrogen methanation–a review. Bioresource Technology, 245, 1220–1228.CrossRef
73.
go back to reference Seifert, A., Rittmann, S., Bernacchi, S., & Herwig, C. (2013). Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresource Technology, 136, 747–751.CrossRef Seifert, A., Rittmann, S., Bernacchi, S., & Herwig, C. (2013). Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresource Technology, 136, 747–751.CrossRef
74.
go back to reference Voelklein, M., Rusmanis, D., & Murphy, J. (2019). Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion. Applied Energy, 235, 1061–1071.CrossRef Voelklein, M., Rusmanis, D., & Murphy, J. (2019). Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion. Applied Energy, 235, 1061–1071.CrossRef
75.
go back to reference Schmidt, P., Batteiger, V., Roth, A., Weindorf, W., & Raksha, T. (2018). Power-to-liquids as renewable fuel option for aviation: A review. Chemie Ingenieur Technik, 90(1–2), 127–140.CrossRef Schmidt, P., Batteiger, V., Roth, A., Weindorf, W., & Raksha, T. (2018). Power-to-liquids as renewable fuel option for aviation: A review. Chemie Ingenieur Technik, 90(1–2), 127–140.CrossRef
76.
go back to reference Kasten, P., Blanck, R., Loreck, C., & Hacker, F. (2013). Strombasierte Kraftstoffe im Vergleich-Stand heute und die Langfristperspektive. Öko-Institut Working Paper, 1, 2013. Kasten, P., Blanck, R., Loreck, C., & Hacker, F. (2013). Strombasierte Kraftstoffe im Vergleich-Stand heute und die Langfristperspektive. Öko-Institut Working Paper, 1, 2013.
77.
go back to reference Kaiser, P., Pöhlmann, F., & Jess, A. (2014). Intrinsic and effective kinetics of cobalt-catalyzed Fischer-Tropsch synthesis in view of a power-to-liquid process based on renewable energy. Chemical Engineering & Technology, 37(6), 964–972.CrossRef Kaiser, P., Pöhlmann, F., & Jess, A. (2014). Intrinsic and effective kinetics of cobalt-catalyzed Fischer-Tropsch synthesis in view of a power-to-liquid process based on renewable energy. Chemical Engineering & Technology, 37(6), 964–972.CrossRef
78.
go back to reference Schmidt, P., Weindorf, W., Roth, A., Batteiger, V., & Riegel, F. (2016). Power-to-liquids: Potentials and perspectives for the future supply of renewable aviation fuel. German Environment Agency. Schmidt, P., Weindorf, W., Roth, A., Batteiger, V., & Riegel, F. (2016). Power-to-liquids: Potentials and perspectives for the future supply of renewable aviation fuel. German Environment Agency.
79.
go back to reference Panzone, C., Philippe, R., Chappaz, A., Fongarland, P., & Bengaouer, A. (2020). Power-to-liquid catalytic CO2 valorization into fuels and chemicals: Focus on the Fischer-Tropsch route. Journal of CO2 Utilization, 38, 314–347.CrossRef Panzone, C., Philippe, R., Chappaz, A., Fongarland, P., & Bengaouer, A. (2020). Power-to-liquid catalytic CO2 valorization into fuels and chemicals: Focus on the Fischer-Tropsch route. Journal of CO2 Utilization, 38, 314–347.CrossRef
80.
go back to reference Hank, C., et al. (2018). Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide–power-to-methanol. Sustainable Energy & Fuels, 2(6), 1244–1261.CrossRef Hank, C., et al. (2018). Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide–power-to-methanol. Sustainable Energy & Fuels, 2(6), 1244–1261.CrossRef
81.
go back to reference Bellotti, D., Rivarolo, M., Magistri, L., & Massardo, A. (2017). Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. Journal of CO2 Utilization, 21, 132–138.CrossRef Bellotti, D., Rivarolo, M., Magistri, L., & Massardo, A. (2017). Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. Journal of CO2 Utilization, 21, 132–138.CrossRef
82.
go back to reference Ikäheimo, J., Kiviluoma, J., Weiss, R., & Holttinen, H. (2018). Power-to-ammonia in future north European 100% renewable power and heat system. International Journal of Hydrogen Energy, 43(36), 17295–17308.CrossRef Ikäheimo, J., Kiviluoma, J., Weiss, R., & Holttinen, H. (2018). Power-to-ammonia in future north European 100% renewable power and heat system. International Journal of Hydrogen Energy, 43(36), 17295–17308.CrossRef
Metadata
Title
Power-to-X for Renewable-Based Hybrid Energy Systems
Authors
Sahar Davoudi
Amirhosein Khalili-Garakani
Kazem Kashefi
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-87653-1_2