Skip to main content
Top
Published in:

2025 | OriginalPaper | Chapter

PR-Rank: A Parameter Regression Approach for Learning-to-Rank Model Adaptation Without Target Domain Data

Authors : Takumi Ito, Atsuki Maruta, Makoto P. Kato, Sumio Fujita

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper addresses a problem of constructing a Learning-to-Rank (LtR) model tailored to a target domain without using any domain-specific queries and relevance judgements. Our proposed method, PR-Rank, incorporates domain features, which are represented in a real-valued vector and can be estimated by domain experts, for adapting LtR models. The key component in our method is a parameter regression model that learns to regress the optimal parameters of the LtR model from the domain features. This eliminates the need for access to users’ queries and relevance judgements in a target domain, which is often unavailable in new and emerging services. In our experiments, we compared the performance of the proposed method against a domain-agnostic method, using publicly available LtR datasets including OHSUMED, MQ2007/2008, TREC Web track, and MSLR. The results showed that our method could outperform the baseline model trained on a large amount of data without considering domain differences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennett, P.N., Svore, K., Dumais, S.T.: Classification-enhanced ranking. In: WWW, pp. 111–120 (2010) Bennett, P.N., Svore, K., Dumais, S.T.: Classification-enhanced ranking. In: WWW, pp. 111–120 (2010)
2.
go back to reference Chen, D., Xiong, Y., Yan, J., Xue, G.R., Wang, G., Chen, Z.: Knowledge transfer for cross domain learning to rank. Inf. Retrieval 13(3), 236–253 (2010) Chen, D., Xiong, Y., Yan, J., Xue, G.R., Wang, G., Chen, Z.: Knowledge transfer for cross domain learning to rank. Inf. Retrieval 13(3), 236–253 (2010)
3.
go back to reference Dato, D., MacAvaney, S., Nardini, F.M., Perego, R., Tonellotto, N.: The istella22 dataset: Bridging traditional and neural learning to rank evaluation. In: SIGIR, pp. 3099–3107 (2022) Dato, D., MacAvaney, S., Nardini, F.M., Perego, R., Tonellotto, N.: The istella22 dataset: Bridging traditional and neural learning to rank evaluation. In: SIGIR, pp. 3099–3107 (2022)
4.
go back to reference Gao, J., et al.: Model adaptation via model interpolation and boosting for web search ranking. In: EMNLP, pp. 505–513 (2009) Gao, J., et al.: Model adaptation via model interpolation and boosting for web search ranking. In: EMNLP, pp. 505–513 (2009)
5.
go back to reference Gao, W., Cai, P., Wong, K.F., Zhou, A.: Learning to rank only using training data from related domain. In: SIGIR, pp. 162–169 (2010) Gao, W., Cai, P., Wong, K.F., Zhou, A.: Learning to rank only using training data from related domain. In: SIGIR, pp. 162–169 (2010)
6.
go back to reference Geng, X., Liu, T.Y., Qin, T., Arnold, A., Li, H., Shum, H.Y.: Query dependent ranking using k-nearest neighbor. In: SIGIR, pp. 115–122 (2008) Geng, X., Liu, T.Y., Qin, T., Arnold, A., Li, H., Shum, H.Y.: Query dependent ranking using k-nearest neighbor. In: SIGIR, pp. 115–122 (2008)
7.
go back to reference Ghanbari, E., Shakery, A.: Query-dependent learning to rank for cross-lingual information retrieval. Knowl. Inf. Syst. 59(3), 711–743 (2019)CrossRef Ghanbari, E., Shakery, A.: Query-dependent learning to rank for cross-lingual information retrieval. Knowl. Inf. Syst. 59(3), 711–743 (2019)CrossRef
8.
go back to reference Goswami, P., Amini, M.R., Gaussier, E.: Transferring knowledge with source selection to learn IR functions on unlabeled collections. In: CIKM, pp. 2315–2320 (2013) Goswami, P., Amini, M.R., Gaussier, E.: Transferring knowledge with source selection to learn IR functions on unlabeled collections. In: CIKM, pp. 2315–2320 (2013)
9.
go back to reference Guo, Q., Chen, W., Wan, H.: AOL4PS: a large-scale data set for personalized search. Data Intell. 3(4), 548–567 (2021)CrossRef Guo, Q., Chen, W., Wan, H.: AOL4PS: a large-scale data set for personalized search. Data Intell. 3(4), 548–567 (2021)CrossRef
10.
go back to reference Hashemi, H., Zhuang, Y., Kothur, S.S.R., Prasad, S., Meij, E., Bruce Croft, W.: Dense retrieval adaptation using target domain description. In: ICTIR, pp. 95–104 (2023) Hashemi, H., Zhuang, Y., Kothur, S.S.R., Prasad, S., Meij, E., Bruce Croft, W.: Dense retrieval adaptation using target domain description. In: ICTIR, pp. 95–104 (2023)
11.
go back to reference Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends® Inf. Retrieval 3(3), 225–331 (2009) Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends® Inf. Retrieval 3(3), 225–331 (2009)
12.
go back to reference Long, B., Lamkhede, S., Vadrevu, S., Zhang, Y., Tseng, B.: A risk minimization framework for domain adaptation. In: CIKM, pp. 1347–1356 (2009) Long, B., Lamkhede, S., Vadrevu, S., Zhang, Y., Tseng, B.: A risk minimization framework for domain adaptation. In: CIKM, pp. 1347–1356 (2009)
13.
go back to reference Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008) Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)
14.
go back to reference MacAvaney, S., Macdonald, C., Ounis, I.: Reproducing personalised session search over the AOL query log. In: ECIR, pp. 627–640 (2022) MacAvaney, S., Macdonald, C., Ounis, I.: Reproducing personalised session search over the AOL query log. In: ECIR, pp. 627–640 (2022)
15.
go back to reference Macdonald, C., Dinçer, B.T., Ounis, I.: Transferring learning to rank models for web search. In: ICTIR, pp. 41–50 (2015) Macdonald, C., Dinçer, B.T., Ounis, I.: Transferring learning to rank models for web search. In: ICTIR, pp. 41–50 (2015)
16.
go back to reference MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967) MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)
17.
go back to reference Ni, W., Huang, Y., Xie, M.: A query dependent approach to learning to rank for information retrieval. In: WAIM, pp. 262–269 (2008) Ni, W., Huang, Y., Xie, M.: A query dependent approach to learning to rank for information retrieval. In: WAIM, pp. 262–269 (2008)
18.
go back to reference Peng, J., Macdonald, C., Ounis, I.: Learning to select a ranking function. In: ECIR, pp. 114–126 (2010) Peng, J., Macdonald, C., Ounis, I.: Learning to select a ranking function. In: ECIR, pp. 114–126 (2010)
20.
go back to reference Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: a benchmark collection for research on learning to rank for information retrieval. Inf. Retrieval 13(4), 346–374 (2010)CrossRef Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: a benchmark collection for research on learning to rank for information retrieval. Inf. Retrieval 13(4), 346–374 (2010)CrossRef
21.
go back to reference Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends®Inf. Retrieval 3(4), 333–389 (2009) Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends®Inf. Retrieval 3(4), 333–389 (2009)
22.
go back to reference Senter, R., Smith, E.A.: Automated readability index. AMRL-TR. Aerospace Medical Research Laboratories, pp. 1–11 (1967) Senter, R., Smith, E.A.: Automated readability index. AMRL-TR. Aerospace Medical Research Laboratories, pp. 1–11 (1967)
23.
go back to reference Sun, S., et al.: Few-Shot text ranking with meta adapted synthetic weak supervision. In: ACL, pp. 5030–5043 (2020) Sun, S., et al.: Few-Shot text ranking with meta adapted synthetic weak supervision. In: ACL, pp. 5030–5043 (2020)
24.
go back to reference Wang, K., Thakur, N., Reimers, N., Gurevych, I.: GPL: generative pseudo labeling for unsupervised domain adaptation of dense retrieval. In: NAACL, pp. 2345–2360 (2022) Wang, K., Thakur, N., Reimers, N., Gurevych, I.: GPL: generative pseudo labeling for unsupervised domain adaptation of dense retrieval. In: NAACL, pp. 2345–2360 (2022)
25.
go back to reference Zhu, P., Hauff, C.: Unsupervised domain adaptation for question generation with domain data selection and self-training. In: NAACL, pp. 2388–2401 (2022) Zhu, P., Hauff, C.: Unsupervised domain adaptation for question generation with domain data selection and self-training. In: NAACL, pp. 2388–2401 (2022)
Metadata
Title
PR-Rank: A Parameter Regression Approach for Learning-to-Rank Model Adaptation Without Target Domain Data
Authors
Takumi Ito
Atsuki Maruta
Makoto P. Kato
Sumio Fujita
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_1

Premium Partner