Skip to main content
Top
Published in:

2020 | OriginalPaper | Chapter

Practical Deep Raw Image Denoising on Mobile Devices

Authors : Yuzhi Wang, Haibin Huang, Qin Xu, Jiaming Liu, Yiqun Liu, Jue Wang

Published in: Computer Vision – ECCV 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning-based image denoising approaches have been extensively studied in recent years, prevailing in many public benchmark datasets. However, the stat-of-the-art networks are computationally too expensive to be directly applied on mobile devices. In this work, we propose a light-weight, efficient neural network-based raw image denoiser that runs smoothly on mainstream mobile devices, and produces high quality denoising results. Our key insights are twofold: (1) by measuring and estimating sensor noise level, a smaller network trained on synthetic sensor-specific data can out-perform larger ones trained on general data; (2) the large noise level variation under different ISO settings can be removed by a novel k-Sigma Transform, allowing a small network to efficiently handle a wide range of noise levels. We conduct extensive experiments to demonstrate the efficiency and accuracy of our approach. Our proposed mobile-friendly denoising model runs at \(\sim \)70 ms per megapixel on Qualcomm Snapdragon 855 chipset, and it is the basis of the night shot feature of several flagship smartphones released in 2019.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018 Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
2.
go back to reference Aharon, M., Elad, M., Bruckstein, A., et al.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311 (2006)CrossRef Aharon, M., Elad, M., Bruckstein, A., et al.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311 (2006)CrossRef
3.
go back to reference Anaya, J., Barbu, A.: RENOIR-a dataset for real low-light image noise reduction. J. Vis. Commun. Image Represent. 51, 144–154 (2018)CrossRef Anaya, J., Barbu, A.: RENOIR-a dataset for real low-light image noise reduction. J. Vis. Commun. Image Represent. 51, 144–154 (2018)CrossRef
4.
go back to reference Anscombe, F.J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254 (1948)MathSciNetCrossRef Anscombe, F.J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254 (1948)MathSciNetCrossRef
5.
go back to reference Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J.T.: Unprocessing images for learned raw denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11036–11045 (2019) Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J.T.: Unprocessing images for learned raw denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11036–11045 (2019)
6.
go back to reference Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005) Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)
7.
go back to reference Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: CVPR (2012) Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: CVPR (2012)
8.
go back to reference Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018) Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)
9.
go back to reference Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: CVPR (2018) Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: CVPR (2018)
10.
go back to reference Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)CrossRef Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)CrossRef
12.
go back to reference Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Image Processing: Algorithms and Systems VI, vol. 6812, p. 681207. International Society for Optics and Photonics (2008) Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Image Processing: Algorithms and Systems VI, vol. 6812, p. 681207. International Society for Optics and Photonics (2008)
13.
go back to reference Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRef Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRef
15.
go back to reference Foi, A., Alenius, S., Katkovnik, V., Egiazarian, K.: Noise measurement for raw-data of digital imaging sensors by automatic segmentation of nonuniform targets. IEEE Sens. J. 7(10), 1456–1461 (2007)CrossRef Foi, A., Alenius, S., Katkovnik, V., Egiazarian, K.: Noise measurement for raw-data of digital imaging sensors by automatic segmentation of nonuniform targets. IEEE Sens. J. 7(10), 1456–1461 (2007)CrossRef
16.
go back to reference Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)MathSciNetCrossRef Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)MathSciNetCrossRef
17.
go back to reference Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM Trans. Graph. (TOG) 35(6), 191 (2016)CrossRef Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM Trans. Graph. (TOG) 35(6), 191 (2016)CrossRef
18.
go back to reference Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: CVPR (2014) Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: CVPR (2014)
20.
go back to reference Hirakawa, K., Parks, T.W.: Joint demosaicing and denoising. IEEE Trans. Image Process. 15(8), 2146–2157 (2006)CrossRef Hirakawa, K., Parks, T.W.: Joint demosaicing and denoising. IEEE Trans. Image Process. 15(8), 2146–2157 (2006)CrossRef
21.
go back to reference Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in neural information processing systems, pp. 769–776 (2009) Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in neural information processing systems, pp. 769–776 (2009)
25.
go back to reference Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299–314 (2008)CrossRef Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299–314 (2008)CrossRef
27.
go back to reference Liu, X., Tanaka, M., Okutomi, M.: Practical signal-dependent noise parameter estimation from a single noisy image. IEEE Trans. Image Process. 23(10), 4361–4371 (2014)MathSciNetCrossRef Liu, X., Tanaka, M., Okutomi, M.: Practical signal-dependent noise parameter estimation from a single noisy image. IEEE Trans. Image Process. 23(10), 4361–4371 (2014)MathSciNetCrossRef
28.
go back to reference Mairal, J., Bach, F.R., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV, vol. 29, pp. 54–62. Citeseer (2009) Mairal, J., Bach, F.R., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV, vol. 29, pp. 54–62. Citeseer (2009)
29.
go back to reference Makitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 20(1), 99–109 (2010)MathSciNetCrossRef Makitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 20(1), 99–109 (2010)MathSciNetCrossRef
30.
go back to reference Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: NeurIPS (2016) Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: NeurIPS (2016)
32.
go back to reference Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)MathSciNetCrossRef Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)MathSciNetCrossRef
34.
go back to reference Shi, G., Zifei, Y., Kai, Z., Wangmeng, Z., Lei, Z.: Toward convolutional blind denoising of real photographs. arXiv preprint arXiv:1807.04686 (2018) Shi, G., Zifei, Y., Kai, Z., Wangmeng, Z., Lei, Z.: Toward convolutional blind denoising of real photographs. arXiv preprint arXiv:​1807.​04686 (2018)
35.
go back to reference Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017) Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)
36.
go back to reference Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 4539–4547 (2017) Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 4539–4547 (2017)
37.
go back to reference Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018) Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)
38.
go back to reference Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012) Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)
39.
go back to reference Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: ICCV (2017) Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: ICCV (2017)
40.
go back to reference Yair, N., Michaeli, T.: Multi-scale weighted nuclear norm image restoration. In: CVPR (2018) Yair, N., Michaeli, T.: Multi-scale weighted nuclear norm image restoration. In: CVPR (2018)
41.
go back to reference Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)MathSciNetCrossRef Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)MathSciNetCrossRef
43.
go back to reference Zhou, Y., Liu, D., Huang, T.: Survey of face detection on low-quality images. In: 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), pp. 769–773. IEEE (2018) Zhou, Y., Liu, D., Huang, T.: Survey of face detection on low-quality images. In: 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), pp. 769–773. IEEE (2018)
44.
go back to reference Zhu, F., Chen, G., Heng, P.A.: From noise modeling to blind image denoising. In: CVPR (2016) Zhu, F., Chen, G., Heng, P.A.: From noise modeling to blind image denoising. In: CVPR (2016)
Metadata
Title
Practical Deep Raw Image Denoising on Mobile Devices
Authors
Yuzhi Wang
Haibin Huang
Qin Xu
Jiaming Liu
Yiqun Liu
Jue Wang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-58539-6_1

Premium Partner