Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2017

31-03-2017

Precipitation-Induced Grain Growth Simulation of Friction-Stir-Welded AA6082-T6

Authors: Q. Wu, Z. Zhang

Published in: Journal of Materials Engineering and Performance | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Friction stir welding of AA6082-T6 with different welding parameters is simulated by computational fluid dynamics model. Monte Carlo method is further used to simulate the grain growth with consideration of the precipitation effects. The comparison with experimental observations can validate the proposed grain growth model with the precipitate effects. Results indicate that the final grain size can be increased by 39.7% in the nugget zone when the volume fraction of precipitation is decreased from 0.8 to 0.2% after welding. Both the grain growth speed and the final grain size on the top surface are higher than the bottom surface. The increase in the welding temperature caused by the increase in the rotation speeds or the axial forces can lead to lower volume fractions of precipitations and then lead to larger grain sizes .

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39, p 642–658CrossRef Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39, p 642–658CrossRef
2.
go back to reference G. Çam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2013, 56, p 1–48CrossRef G. Çam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2013, 56, p 1–48CrossRef
3.
go back to reference G. Çam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-Alloys, J. Mater. Eng. Perform, 2014, 23, p 1936–1953CrossRef G. Çam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-Alloys, J. Mater. Eng. Perform, 2014, 23, p 1936–1953CrossRef
4.
go back to reference B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, and A.M. Stauss, Friction Stir Welding: Process, Automation, and Control, J. Manuf. Process., 2014, 16, p 56–73CrossRef B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, and A.M. Stauss, Friction Stir Welding: Process, Automation, and Control, J. Manuf. Process., 2014, 16, p 56–73CrossRef
5.
go back to reference S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Establishing Empirical Relationships to Predict Grain Size and Tensile Strength of Friction Stir Welded AA 6061-T6 Aluminium Alloy Joints, Trans. Nonferr. Met. Soc. China, 2010, 20, p 1863–1872CrossRef S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Establishing Empirical Relationships to Predict Grain Size and Tensile Strength of Friction Stir Welded AA 6061-T6 Aluminium Alloy Joints, Trans. Nonferr. Met. Soc. China, 2010, 20, p 1863–1872CrossRef
6.
go back to reference M.A. Safarkhanian, M. Goodarzi, and S.M.A. Boutorabi, Effect of Abnormal Grain Growth on Tensile Strength of Al-Cu-Mg Alloy Friction Stir Welded Joints, J. Mater. Sci., 2009, 44, p 5452–5458CrossRef M.A. Safarkhanian, M. Goodarzi, and S.M.A. Boutorabi, Effect of Abnormal Grain Growth on Tensile Strength of Al-Cu-Mg Alloy Friction Stir Welded Joints, J. Mater. Sci., 2009, 44, p 5452–5458CrossRef
7.
go back to reference T. Sakthivel and J. Mukhopadhyay, Microstructure and Mechanical Properties of Friction Stir Welded Copper, J. Mater. Sci., 2007, 42, p 8126–8129CrossRef T. Sakthivel and J. Mukhopadhyay, Microstructure and Mechanical Properties of Friction Stir Welded Copper, J. Mater. Sci., 2007, 42, p 8126–8129CrossRef
8.
go back to reference P. Cavaliere and P.P.D. Marco, Effect of Friction Stir Processing on Mechanical and Microstructural Properties of AM60B MAGNESIUM ALLOY, J. Mater. Sci., 2006, 41, p 3459–3464CrossRef P. Cavaliere and P.P.D. Marco, Effect of Friction Stir Processing on Mechanical and Microstructural Properties of AM60B MAGNESIUM ALLOY, J. Mater. Sci., 2006, 41, p 3459–3464CrossRef
9.
go back to reference M.M. Attallah, C.L. Davis, and M. Strangwood, Microstructure-Microhardness Relationships in Friction Stir Welded AA5251, J. Mater. Sci., 2007, 42, p 7299–7306CrossRef M.M. Attallah, C.L. Davis, and M. Strangwood, Microstructure-Microhardness Relationships in Friction Stir Welded AA5251, J. Mater. Sci., 2007, 42, p 7299–7306CrossRef
10.
go back to reference M.M. Attallah and H.G. Salem, Friction Stir Welding Parameters: A Tool for Controlling Abnormal Grain Growth During Subsequent Heat Treatment, Mater. Sci. Eng. A, 2005, 391, p 51–59CrossRef M.M. Attallah and H.G. Salem, Friction Stir Welding Parameters: A Tool for Controlling Abnormal Grain Growth During Subsequent Heat Treatment, Mater. Sci. Eng. A, 2005, 391, p 51–59CrossRef
11.
go back to reference W.F. Xu, J.H. Liu, H.Q. Zhu, and L. Fu, Influence of Welding Parameters and Tool Pin Profile on Microstructure and Mechanical Properties Along the Thickness in a Friction Stir Welded Aluminum Alloy, Mater. Des., 2013, 47, p 599–606CrossRef W.F. Xu, J.H. Liu, H.Q. Zhu, and L. Fu, Influence of Welding Parameters and Tool Pin Profile on Microstructure and Mechanical Properties Along the Thickness in a Friction Stir Welded Aluminum Alloy, Mater. Des., 2013, 47, p 599–606CrossRef
12.
go back to reference P.B. Prangnell and C.P. Heason, Grain Structure Formation During Friction Stir Welding Observed by the ‘Stop Action Technique’, Acta Mater., 2005, 53, p 3179–3192CrossRef P.B. Prangnell and C.P. Heason, Grain Structure Formation During Friction Stir Welding Observed by the ‘Stop Action Technique’, Acta Mater., 2005, 53, p 3179–3192CrossRef
13.
go back to reference R.W. Fonda, J.F. Bingert, and K.J. Colligan, Development of Grain Structure During Friction Stir Welding, Scr. Mater., 2004, 51, p 243–248CrossRef R.W. Fonda, J.F. Bingert, and K.J. Colligan, Development of Grain Structure During Friction Stir Welding, Scr. Mater., 2004, 51, p 243–248CrossRef
14.
go back to reference D.M. Neto and P. Neto, Numerical Modeling of Friction Stir Welding Process: A Literature Review, Int. J. Adv. Manuf. Technol., 2013, 65, p 115–126CrossRef D.M. Neto and P. Neto, Numerical Modeling of Friction Stir Welding Process: A Literature Review, Int. J. Adv. Manuf. Technol., 2013, 65, p 115–126CrossRef
15.
go back to reference H. Atharifar, D. Lin, and R. Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding, J. Mater. Eng. Perform., 2009, 18(4), p 339–350CrossRef H. Atharifar, D. Lin, and R. Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding, J. Mater. Eng. Perform., 2009, 18(4), p 339–350CrossRef
16.
go back to reference P. Carlone and G.S. Palazzo, A Numerical and Experimental Analysis of Microstructural Aspects in AA2024-T3 Friction Stir Welding, Key Eng. Mater., 2013, 554, p 1022–1030CrossRef P. Carlone and G.S. Palazzo, A Numerical and Experimental Analysis of Microstructural Aspects in AA2024-T3 Friction Stir Welding, Key Eng. Mater., 2013, 554, p 1022–1030CrossRef
17.
go back to reference R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer During Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11, p 526–537CrossRef R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer During Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11, p 526–537CrossRef
18.
go back to reference H.W. Zhang, Z. Zhang, and J.T. Chen, 3D Modeling of Material Flow in Friction Stir Welding Under Different Process Parameters, J. Mater. Process. Technol., 2007, 183, p 62–70CrossRef H.W. Zhang, Z. Zhang, and J.T. Chen, 3D Modeling of Material Flow in Friction Stir Welding Under Different Process Parameters, J. Mater. Process. Technol., 2007, 183, p 62–70CrossRef
19.
go back to reference Z. Zhang, J.T. Chen, Z.W. Zhang, and H.W. Zhang, Coupled Thermo-mechanical Model Based Comparison of Friction Stir Welding Processes of AA2024-T3 in Different Thicknesses, J. Mater. Sci., 2011, 46, p 5815–5821CrossRef Z. Zhang, J.T. Chen, Z.W. Zhang, and H.W. Zhang, Coupled Thermo-mechanical Model Based Comparison of Friction Stir Welding Processes of AA2024-T3 in Different Thicknesses, J. Mater. Sci., 2011, 46, p 5815–5821CrossRef
20.
go back to reference Z. Zhang and H.W. Zhang, A Fully Coupled Thermo-mechanical Model of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2008, 37, p 279–293CrossRef Z. Zhang and H.W. Zhang, A Fully Coupled Thermo-mechanical Model of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2008, 37, p 279–293CrossRef
21.
go back to reference A. Arora, Z. Zhang, A. De, and T. Debroy, Strains and Strain Rates During Friction Stir Welding, Scr. Mater., 2009, 61, p 863–866CrossRef A. Arora, Z. Zhang, A. De, and T. Debroy, Strains and Strain Rates During Friction Stir Welding, Scr. Mater., 2009, 61, p 863–866CrossRef
22.
go back to reference Z. Zhang, Q. Wu, and H.W. Zhang, Numerical Studies of Effect of Tool Sizes and Pin Shapes on Friction Stir Welding of AA2024-T3 Alloy, Trans. Nonferr. Met. Soc. China, 2014, 24, p 3293–3301CrossRef Z. Zhang, Q. Wu, and H.W. Zhang, Numerical Studies of Effect of Tool Sizes and Pin Shapes on Friction Stir Welding of AA2024-T3 Alloy, Trans. Nonferr. Met. Soc. China, 2014, 24, p 3293–3301CrossRef
23.
go back to reference Z. Zhang and H.W. Zhang, Solid Mechanics-Based Eulerian Model of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2014, 72, p 1647–1653CrossRef Z. Zhang and H.W. Zhang, Solid Mechanics-Based Eulerian Model of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2014, 72, p 1647–1653CrossRef
24.
go back to reference W. Pan, D. Li, A.M. Tartakovsky, S. Ahzi, M. Khraisheh, and M. Khaleel, A New Smoothed Particle Hydrodynamics Non-Newtonian Model for Friction Stir Welding: Process Modeling and Simulation of Microstructure Evolution in a Magnesium Alloy, Int. J. Plast., 2013, 48, p 189–204CrossRef W. Pan, D. Li, A.M. Tartakovsky, S. Ahzi, M. Khraisheh, and M. Khaleel, A New Smoothed Particle Hydrodynamics Non-Newtonian Model for Friction Stir Welding: Process Modeling and Simulation of Microstructure Evolution in a Magnesium Alloy, Int. J. Plast., 2013, 48, p 189–204CrossRef
25.
go back to reference R.S. Saluja, R.G. Narayanan, and S. Das, Cellular Automata Finite Element (CAFE) Model to Predict the Forming of Friction Stir Welded Blanks, Comput. Mater. Sci., 2012, 58, p 87–100CrossRef R.S. Saluja, R.G. Narayanan, and S. Das, Cellular Automata Finite Element (CAFE) Model to Predict the Forming of Friction Stir Welded Blanks, Comput. Mater. Sci., 2012, 58, p 87–100CrossRef
26.
go back to reference K.J. Song, Y.H. Wei, Z.B. Dong, X.Y. Wang, W.J. Zheng, and K. Fang, Cellular Automaton Modeling of Diffusion, Mixed and Interface Controlled Phase Transformation, J. Phase Equilibria Diffus,, 2014, 36, p 136–148CrossRef K.J. Song, Y.H. Wei, Z.B. Dong, X.Y. Wang, W.J. Zheng, and K. Fang, Cellular Automaton Modeling of Diffusion, Mixed and Interface Controlled Phase Transformation, J. Phase Equilibria Diffus,, 2014, 36, p 136–148CrossRef
27.
go back to reference K.J. Song, K. Fang, Z.B. Dong, X.H. Zhan, and Y.H. Wei, Cellular Automaton Modelling of Dynamic Recrystallisation Microstructure Evolution During Friction Stir Welding of Titanium Alloy, Mater. Sci. Technol., 2014, 30, p 700–711CrossRef K.J. Song, K. Fang, Z.B. Dong, X.H. Zhan, and Y.H. Wei, Cellular Automaton Modelling of Dynamic Recrystallisation Microstructure Evolution During Friction Stir Welding of Titanium Alloy, Mater. Sci. Technol., 2014, 30, p 700–711CrossRef
28.
go back to reference S. Mishra and T. Debroy, Measurements and Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of Ti-6Al-4V Welds, Acta Mater., 2004, 52, p 1183–1192CrossRef S. Mishra and T. Debroy, Measurements and Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of Ti-6Al-4V Welds, Acta Mater., 2004, 52, p 1183–1192CrossRef
29.
go back to reference Z.Z. Zhang and C.S. Wu, Monte Carlo Simulation of Grain Growth in Heat-Affected Zone of 12 wt.% Cr Ferritic Stainless Steel Hybrid Welds, Comput. Mater. Sci., 2012, 65, p 442–449CrossRef Z.Z. Zhang and C.S. Wu, Monte Carlo Simulation of Grain Growth in Heat-Affected Zone of 12 wt.% Cr Ferritic Stainless Steel Hybrid Welds, Comput. Mater. Sci., 2012, 65, p 442–449CrossRef
30.
go back to reference Z. Zhang, Q. Wu, M. Grujicic, and Z.Y. Wan, Monte Carlo Simulation of Grain Growth and Welding Zones in Friction Stir Welding of AA6082-T6, J. Mater. Sci., 2016, 51, p 1882–1895CrossRef Z. Zhang, Q. Wu, M. Grujicic, and Z.Y. Wan, Monte Carlo Simulation of Grain Growth and Welding Zones in Friction Stir Welding of AA6082-T6, J. Mater. Sci., 2016, 51, p 1882–1895CrossRef
31.
go back to reference M. Grujicic, S. Ramaswami, J.S. Snipes, V. Avuthu, R. Galgalikar, and Z. Zhang, Prediction of the Grain-Microstructure Evolution Within a Friction Stir Welding (FSW) Joint Via the Use of the Monte Carlo Simulation Method, J. Mater. Eng. Perform., 2015, 24, p 3471–3486CrossRef M. Grujicic, S. Ramaswami, J.S. Snipes, V. Avuthu, R. Galgalikar, and Z. Zhang, Prediction of the Grain-Microstructure Evolution Within a Friction Stir Welding (FSW) Joint Via the Use of the Monte Carlo Simulation Method, J. Mater. Eng. Perform., 2015, 24, p 3471–3486CrossRef
32.
go back to reference T. Nishizawa, I. Ohnuma, and K. Ishida, Examination of the Zener Relationship Between Grain Size and Particle Dispersion, Mater. Trans. Jim, 1997, 38, p 950–956CrossRef T. Nishizawa, I. Ohnuma, and K. Ishida, Examination of the Zener Relationship Between Grain Size and Particle Dispersion, Mater. Trans. Jim, 1997, 38, p 950–956CrossRef
33.
go back to reference S.M.H. Haghighat and A.K. Taheri, Investigation of Limiting Grain Size and Microstructure Homogeneity in the Presence of Second Phase Particles Using the Monte Carlo Method, J. Mater. Process. Technol., 2008, 195, p 195–203CrossRef S.M.H. Haghighat and A.K. Taheri, Investigation of Limiting Grain Size and Microstructure Homogeneity in the Presence of Second Phase Particles Using the Monte Carlo Method, J. Mater. Process. Technol., 2008, 195, p 195–203CrossRef
34.
go back to reference N. Moelans, B. Blanpain, and P. Wollants, Pinning Effect of Second-Phase Particles on Grain Growth in Polycrystalline Films Studied by 3-D Phase Field Simulations, Acta Mater., 2007, 55, p 2173–2182CrossRef N. Moelans, B. Blanpain, and P. Wollants, Pinning Effect of Second-Phase Particles on Grain Growth in Polycrystalline Films Studied by 3-D Phase Field Simulations, Acta Mater., 2007, 55, p 2173–2182CrossRef
35.
go back to reference F. Han, B. Tang, H. Kou, J. Li, and Y. Feng, Cellular Automata Simulations of Grain Growth in the Presence of Second-Phase Particles, Model. Simul. Mater. Sci. Eng., 2015, 23, p 065010CrossRef F. Han, B. Tang, H. Kou, J. Li, and Y. Feng, Cellular Automata Simulations of Grain Growth in the Presence of Second-Phase Particles, Model. Simul. Mater. Sci. Eng., 2015, 23, p 065010CrossRef
36.
go back to reference K. Chang, W. Feng, and L.Q. Chen, Effect of Second-Phase Particle Morphology on Grain Growth Kinetics, Acta Mater., 2009, 57, p 5229–5236CrossRef K. Chang, W. Feng, and L.Q. Chen, Effect of Second-Phase Particle Morphology on Grain Growth Kinetics, Acta Mater., 2009, 57, p 5229–5236CrossRef
37.
go back to reference W. Wei, P. Jiang, and F. Cao, Constitutive Equations for Hot Deformation of 6082 Aluminum Alloy, J. Plast. Eng., 2013, 20, p 100–106 ((In Chinese)) W. Wei, P. Jiang, and F. Cao, Constitutive Equations for Hot Deformation of 6082 Aluminum Alloy, J. Plast. Eng., 2013, 20, p 100–106 ((In Chinese))
38.
go back to reference P.A. Colegrove and H.R. Shercliff, 3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile, J. Mater. Process. Technol., 2005, 169, p 320–327CrossRef P.A. Colegrove and H.R. Shercliff, 3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile, J. Mater. Process. Technol., 2005, 169, p 320–327CrossRef
39.
go back to reference Z. Zhang and Q. Wu, Analytical and Numerical Studies of Fatigue Stresses in Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2015, 78, p 1371–1380CrossRef Z. Zhang and Q. Wu, Analytical and Numerical Studies of Fatigue Stresses in Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2015, 78, p 1371–1380CrossRef
40.
go back to reference Z. Zhang, Q. Wu, and H.W. Zhang, Prediction of Fatigue Life of Welding Tool in Friction Stir Welding of AA6061-T6, Int. J. Adv. Manuf. Technol., 2016, 86, p 3407–3415CrossRef Z. Zhang, Q. Wu, and H.W. Zhang, Prediction of Fatigue Life of Welding Tool in Friction Stir Welding of AA6061-T6, Int. J. Adv. Manuf. Technol., 2016, 86, p 3407–3415CrossRef
41.
go back to reference M. Riahi and H. Nazari, Analysis of Transient Temperature and Residual Thermal Stresses in Friction Stir Welding of Aluminum Alloy 6061-T6 Via Numerical Simulation, Int. J. Adv. Manuf. Technol., 2011, 55, p 143–152CrossRef M. Riahi and H. Nazari, Analysis of Transient Temperature and Residual Thermal Stresses in Friction Stir Welding of Aluminum Alloy 6061-T6 Via Numerical Simulation, Int. J. Adv. Manuf. Technol., 2011, 55, p 143–152CrossRef
42.
go back to reference G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A Continuum Based FEM Model for Friction Stir Welding-Model Development, Mater. Sci. Eng. A, 2006, 419, p 389–396CrossRef G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A Continuum Based FEM Model for Friction Stir Welding-Model Development, Mater. Sci. Eng. A, 2006, 419, p 389–396CrossRef
43.
go back to reference G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, Design of the Friction Stir Welding Tool Using the Continuum Based FEM Model, Mater. Sci. Eng. A, 2006, 419(1–2), p 381–388CrossRef G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, Design of the Friction Stir Welding Tool Using the Continuum Based FEM Model, Mater. Sci. Eng. A, 2006, 419(1–2), p 381–388CrossRef
44.
go back to reference Z. Yang, S. Sista, J.W. Elmer, and T. Debroy, Three Dimensional Monte Carlo Simulation of Grain Growth During GTA Welding of Titanium, Acta Mater., 2000, 48, p 4813–4825CrossRef Z. Yang, S. Sista, J.W. Elmer, and T. Debroy, Three Dimensional Monte Carlo Simulation of Grain Growth During GTA Welding of Titanium, Acta Mater., 2000, 48, p 4813–4825CrossRef
45.
go back to reference S. Sista, Z. Yang, and T. Debroy, Three-Dimensional Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of a 2.25Cr-1Mo Steel Weld, Metall. Mater. Trans. B, 2000, 31, p 529–536CrossRef S. Sista, Z. Yang, and T. Debroy, Three-Dimensional Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of a 2.25Cr-1Mo Steel Weld, Metall. Mater. Trans. B, 2000, 31, p 529–536CrossRef
46.
go back to reference R. Ding and Z.X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization, Acta Mater., 2010, 49, p 3163–3175CrossRef R. Ding and Z.X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization, Acta Mater., 2010, 49, p 3163–3175CrossRef
47.
go back to reference D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier, Coupled Precipitation and Yield Strength Modelling for Non-isothermal Treatments of a 6061 Aluminium Alloy, Acta Mater., 2014, 62, p 129–140CrossRef D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier, Coupled Precipitation and Yield Strength Modelling for Non-isothermal Treatments of a 6061 Aluminium Alloy, Acta Mater., 2014, 62, p 129–140CrossRef
48.
go back to reference O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara, Modelling of the Microstructure and Strength Evolution in Al-Mg-Si Alloys During Multistage Thermal Processing, Acta Mater., 2004, 52, p 4997–5008CrossRef O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara, Modelling of the Microstructure and Strength Evolution in Al-Mg-Si Alloys During Multistage Thermal Processing, Acta Mater., 2004, 52, p 4997–5008CrossRef
49.
go back to reference J.H. Gao and R.G. Thompson, Real Time-Temperature Models for Monte Carlo Simulations of Normal Grain Growth, Acta Mater., 1996, 44, p 4565–4570CrossRef J.H. Gao and R.G. Thompson, Real Time-Temperature Models for Monte Carlo Simulations of Normal Grain Growth, Acta Mater., 1996, 44, p 4565–4570CrossRef
50.
go back to reference G.W. Driver and K.E. Johnson, Interpretation of Fusion and Vaporisation Entropies for Various Classes of Substances, with a Focus on Salts, J. Chem. Thermodyn., 2014, 70, p 207–213CrossRef G.W. Driver and K.E. Johnson, Interpretation of Fusion and Vaporisation Entropies for Various Classes of Substances, with a Focus on Salts, J. Chem. Thermodyn., 2014, 70, p 207–213CrossRef
51.
go back to reference D.M. Kirch, E. Jannot, L.A. Barrales-Mora, D.A. Molodov, and G. Gottstein, Inclination Dependence of Grain Boundary Energy and Its Impact on the Faceting and Kinetics of Tilt Grain Boundaries in Aluminum, Acta Mater., 2008, 56, p 4998–5011CrossRef D.M. Kirch, E. Jannot, L.A. Barrales-Mora, D.A. Molodov, and G. Gottstein, Inclination Dependence of Grain Boundary Energy and Its Impact on the Faceting and Kinetics of Tilt Grain Boundaries in Aluminum, Acta Mater., 2008, 56, p 4998–5011CrossRef
52.
go back to reference Y. Morisada, T. Imaizumi, and H. Fujii, Determination of Strain Rate in Friction Stir Welding by Three-Dimensional Visualization of Material Flow Using X-ray Radiography, Scr. Mater., 2015, 106, p 57–60CrossRef Y. Morisada, T. Imaizumi, and H. Fujii, Determination of Strain Rate in Friction Stir Welding by Three-Dimensional Visualization of Material Flow Using X-ray Radiography, Scr. Mater., 2015, 106, p 57–60CrossRef
53.
go back to reference J.Q. Zhang, Y.F. Shen, B. Li, H.S. Xu, X. Yao, B.B. Kuang, and J.C. Gao, Numerical Simulation and Experimental Investigation on Friction Stir Welding of 6061-T6 Aluminum Alloy, Mater. Des., 2014, 60, p 94–101CrossRef J.Q. Zhang, Y.F. Shen, B. Li, H.S. Xu, X. Yao, B.B. Kuang, and J.C. Gao, Numerical Simulation and Experimental Investigation on Friction Stir Welding of 6061-T6 Aluminum Alloy, Mater. Des., 2014, 60, p 94–101CrossRef
54.
go back to reference A. Arora, T. Debroy, and H.K.D.H. Bhadeshia, Back-of-the-Envelope Calculations in Friction Stir Welding-Velocities, Peak Temperature, Torque, and Hardness, Acta Mater., 2011, 59, p 2020–2028CrossRef A. Arora, T. Debroy, and H.K.D.H. Bhadeshia, Back-of-the-Envelope Calculations in Friction Stir Welding-Velocities, Peak Temperature, Torque, and Hardness, Acta Mater., 2011, 59, p 2020–2028CrossRef
55.
go back to reference C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener–Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514CrossRef C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener–Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514CrossRef
56.
go back to reference K. Kuykendall, T. Nelson, and C. Sorensen, On the Selection of Constitutive Laws Used in Modeling Friction Stir Welding, Int. J. Mach. Tools Manuf., 2013, 74, p 74–85CrossRef K. Kuykendall, T. Nelson, and C. Sorensen, On the Selection of Constitutive Laws Used in Modeling Friction Stir Welding, Int. J. Mach. Tools Manuf., 2013, 74, p 74–85CrossRef
57.
go back to reference S. Choudhury and R. Jayaganthan, Monte Carlo Simulation of Grain Growth in 2D and 3D Bicrystals with Mobile and Immobile Impurities, Mater. Chem. Phys., 2008, 109, p 325–333CrossRef S. Choudhury and R. Jayaganthan, Monte Carlo Simulation of Grain Growth in 2D and 3D Bicrystals with Mobile and Immobile Impurities, Mater. Chem. Phys., 2008, 109, p 325–333CrossRef
58.
go back to reference H.N. Lee, H.S. Ryoo, and S.K. Hwang, Monte Carlo Simulation of Microstructure Evolution Based on Grain Boundary Character Distribution, Mater. Sci. Eng. A, 2000, 281(1–2), p 176–188CrossRef H.N. Lee, H.S. Ryoo, and S.K. Hwang, Monte Carlo Simulation of Microstructure Evolution Based on Grain Boundary Character Distribution, Mater. Sci. Eng. A, 2000, 281(1–2), p 176–188CrossRef
59.
go back to reference J.B. Allen, C.F. Cornwell, B.D. Devine, and C.R. Welch, Simulations of Anisotropic Grain Growth in Single Phase Materials Using Q-state Monte Carlo, Comput. Mater. Sci., 2013, 71, p 25–32CrossRef J.B. Allen, C.F. Cornwell, B.D. Devine, and C.R. Welch, Simulations of Anisotropic Grain Growth in Single Phase Materials Using Q-state Monte Carlo, Comput. Mater. Sci., 2013, 71, p 25–32CrossRef
60.
go back to reference L. Fratini and G. Buffa, CDRX Modelling in Friction Stir Welding of Aluminium Alloys, Int. J. Mach. Tools Manuf., 2005, 45, p 1188–1194CrossRef L. Fratini and G. Buffa, CDRX Modelling in Friction Stir Welding of Aluminium Alloys, Int. J. Mach. Tools Manuf., 2005, 45, p 1188–1194CrossRef
Metadata
Title
Precipitation-Induced Grain Growth Simulation of Friction-Stir-Welded AA6082-T6
Authors
Q. Wu
Z. Zhang
Publication date
31-03-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2639-1

Other articles of this Issue 5/2017

Journal of Materials Engineering and Performance 5/2017 Go to the issue

Premium Partners