Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2019

04-03-2019

Precipitation of Carbides and Dissolution of Widmanstätten Structure for Enhanced Hardness in Ti2AlNb-Based Alloys

Authors: Yaran Zhang, Qi Cai, Yongchang Liu, Qianying Guo, Huijun Li

Published in: Journal of Materials Engineering and Performance | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbide-reinforced Ti2AlNb matrix composites were spark plasma sintered at 1100 °C by incorporating CNTs into single-B2-phase Ti-22Al-25Nb powders. The as-SPSed alloys were solution treated and then aged in different phase regions. By kinetics analysis and energy-dispersive spectroscopy, it is found carbon will stabilize α2 phase during solution treatment, and the formation of carbide results in the Nb-depleted regions, which further induces the formation of curly B2 + O Widmanstätten structure during quenching. Different from the general Widmanstätten structure in the aged Ti2AlNb alloy, the remained α2 will consume the B2 within the Widmanstätten structure, when the carbon-added alloy is aged in B2 + O phase region. Compared to the alloy without CNTs, the Vickers hardness of the aged carbon-added Ti2AlNb alloy is increased significantly, which is related to the uniform and abundant columnar carbides within the O-phase matrix.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61, p 844–879CrossRef D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61, p 844–879CrossRef
2.
go back to reference Y. Zong, P. Liu, B. Guo, and D. Shan, Springback Evaluation in Hot v-Bending of Ti-6Al-4V Alloy Sheets, Int. J. Adv. Manuf. Technol., 2014, 76, p 577–585CrossRef Y. Zong, P. Liu, B. Guo, and D. Shan, Springback Evaluation in Hot v-Bending of Ti-6Al-4V Alloy Sheets, Int. J. Adv. Manuf. Technol., 2014, 76, p 577–585CrossRef
3.
go back to reference Z.Y. Ma, R.S. Mishra, and S.C. Tjong, High-Temperature Creep Behavior of TiC Particulate Reinforced Ti-6Al-4V Alloy Composite, Acta Mater., 2002, 50, p 4293–4302CrossRef Z.Y. Ma, R.S. Mishra, and S.C. Tjong, High-Temperature Creep Behavior of TiC Particulate Reinforced Ti-6Al-4V Alloy Composite, Acta Mater., 2002, 50, p 4293–4302CrossRef
4.
go back to reference S. Ranganath and R.S. Mishra, Steady State Creep Behaviour of Particulate-Reinforced Titanium Matrix Composites, Acta Mater., 1996, 44, p 927–935CrossRef S. Ranganath and R.S. Mishra, Steady State Creep Behaviour of Particulate-Reinforced Titanium Matrix Composites, Acta Mater., 1996, 44, p 927–935CrossRef
5.
go back to reference C. Poletti, M. Balog, T. Schubert, V. Liedtke, and C. Edtmaier, Production of Titanium Matrix Composites Reinforced with SiC Particles, Compos. Sci. Technol., 2008, 68, p 2171–2177CrossRef C. Poletti, M. Balog, T. Schubert, V. Liedtke, and C. Edtmaier, Production of Titanium Matrix Composites Reinforced with SiC Particles, Compos. Sci. Technol., 2008, 68, p 2171–2177CrossRef
6.
go back to reference C. Even, C. Arvieu, and J.M. Quenisset, Powder Route Processing of Carbon Fibres Reinforced Titanium Matrix Composites, Compos. Sci. Technol., 2008, 68, p 1273–1281CrossRef C. Even, C. Arvieu, and J.M. Quenisset, Powder Route Processing of Carbon Fibres Reinforced Titanium Matrix Composites, Compos. Sci. Technol., 2008, 68, p 1273–1281CrossRef
7.
go back to reference W.A. Baeslack, III, P.S. Liu, P.R. Smith, and J. Gould, Characterization of Solid-State Resistance Welds in SiC-Reinforced Orthorhombic-Based Ti-22Al-23Nb (at.%) Titanium Aluminide, Mater. Charact., 1998, 41, p 41–51CrossRef W.A. Baeslack, III, P.S. Liu, P.R. Smith, and J. Gould, Characterization of Solid-State Resistance Welds in SiC-Reinforced Orthorhombic-Based Ti-22Al-23Nb (at.%) Titanium Aluminide, Mater. Charact., 1998, 41, p 41–51CrossRef
8.
go back to reference Y.J. Kim, H. Chung, and S.J.L. Kang, Processing and Mechanical Properties of Ti-6Al-4V/TiC in situ Composite Fabricated by Gas–Solid Reaction, Mater. Sci. Eng. A, 2002, 333, p 343–350CrossRef Y.J. Kim, H. Chung, and S.J.L. Kang, Processing and Mechanical Properties of Ti-6Al-4V/TiC in situ Composite Fabricated by Gas–Solid Reaction, Mater. Sci. Eng. A, 2002, 333, p 343–350CrossRef
9.
go back to reference P.R. Smith, A.H. Rosenberger, M.J. Shepard, and R. WheelerIV, Review AP/M Approach for the Fabrication of an Orthorhombic Titanium Aluminide for MMC Applications, J. Mater. Sci., 2000, 35, p 3169–3179CrossRef P.R. Smith, A.H. Rosenberger, M.J. Shepard, and R. WheelerIV, Review AP/M Approach for the Fabrication of an Orthorhombic Titanium Aluminide for MMC Applications, J. Mater. Sci., 2000, 35, p 3169–3179CrossRef
10.
go back to reference C.Y. Tang, C.T. Wong, L.N. Zhang et al., In situ Formation of Ti Alloy/TiC Porous Composites by Rapid Microwave Sintering of Ti6Al4V/MWCNTs Powder, J. Alloys Compd., 2013, 557, p 67–72CrossRef C.Y. Tang, C.T. Wong, L.N. Zhang et al., In situ Formation of Ti Alloy/TiC Porous Composites by Rapid Microwave Sintering of Ti6Al4V/MWCNTs Powder, J. Alloys Compd., 2013, 557, p 67–72CrossRef
11.
go back to reference I.A.M. Arif, M.K. Talari, A.L. Anis, M.H. Ismail, and N. Kishore Babu, Grain Refinement, Microstructural and Hardness Investigation of C Added Ti-15-3 Alloys Prepared by Argon Arc Melting, Trans. Indian Inst. Met., 2017, 70, p 861–865CrossRef I.A.M. Arif, M.K. Talari, A.L. Anis, M.H. Ismail, and N. Kishore Babu, Grain Refinement, Microstructural and Hardness Investigation of C Added Ti-15-3 Alloys Prepared by Argon Arc Melting, Trans. Indian Inst. Met., 2017, 70, p 861–865CrossRef
12.
go back to reference H. Jia, Z. Zhang, Z. Qi, G. Liu, and X. Bian, Formation of Nanocrystalline TiC from Titanium and Different Carbon Sources by Mechanical Alloying, J. Alloys Compd., 2009, 472, p 97–103CrossRef H. Jia, Z. Zhang, Z. Qi, G. Liu, and X. Bian, Formation of Nanocrystalline TiC from Titanium and Different Carbon Sources by Mechanical Alloying, J. Alloys Compd., 2009, 472, p 97–103CrossRef
13.
go back to reference K.P. So, D. Chen, A. Kushima et al., Dispersion of Carbon Nanotubes in Aluminum Improves Radiation Resistance, Nano Energy, 2016, 22, p 319–327CrossRef K.P. So, D. Chen, A. Kushima et al., Dispersion of Carbon Nanotubes in Aluminum Improves Radiation Resistance, Nano Energy, 2016, 22, p 319–327CrossRef
14.
go back to reference K. Chang and D. Gu, Direct Metal Laser Sintering Synthesis of Carbon Nanotube Reinforced Ti Matrix Composites: Densification, Distribution Characteristics and Properties, J. Mater. Res., 2016, 31, p 281–291CrossRef K. Chang and D. Gu, Direct Metal Laser Sintering Synthesis of Carbon Nanotube Reinforced Ti Matrix Composites: Densification, Distribution Characteristics and Properties, J. Mater. Res., 2016, 31, p 281–291CrossRef
15.
go back to reference K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, High-Temperature Properties of Extruded Titanium Composites Fabricated from Carbon Nanotubes Coated Titanium Powder by Spark Plasma Sintering and Hot Extrusion, Compos. Sci. Technol., 2012, 72, p 1291–1297CrossRef K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, High-Temperature Properties of Extruded Titanium Composites Fabricated from Carbon Nanotubes Coated Titanium Powder by Spark Plasma Sintering and Hot Extrusion, Compos. Sci. Technol., 2012, 72, p 1291–1297CrossRef
16.
go back to reference K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, Characteristics of Powder Metallurgy Pure Titanium Matrix Composite Reinforced with Multi-wall Carbon Nanotubes, Compos. Sci. Technol., 2009, 69, p 1077–1081CrossRef K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, Characteristics of Powder Metallurgy Pure Titanium Matrix Composite Reinforced with Multi-wall Carbon Nanotubes, Compos. Sci. Technol., 2009, 69, p 1077–1081CrossRef
17.
go back to reference K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S.R. Bakshi, Formation of TiCx During Reactive Spark Plasma Sintering Of Mechanically Milled Ti/Carbon Nanotube Mixtures, J. Alloys Compd., 2017, 709, p 829–841CrossRef K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S.R. Bakshi, Formation of TiCx During Reactive Spark Plasma Sintering Of Mechanically Milled Ti/Carbon Nanotube Mixtures, J. Alloys Compd., 2017, 709, p 829–841CrossRef
18.
go back to reference Q.M. Wang, K. Zhang, J. Gong, Y.Y. Cui, C. Sun, and L.S. Wen, NiCoCrAlY Coatings With and Without an Al2O3/Al Interlayer on an Orthorhombic Ti2AlNb-Based Alloy: Oxidation and Interdiffusion Behaviors, Acta Mater., 2007, 55, p 1427–1439CrossRef Q.M. Wang, K. Zhang, J. Gong, Y.Y. Cui, C. Sun, and L.S. Wen, NiCoCrAlY Coatings With and Without an Al2O3/Al Interlayer on an Orthorhombic Ti2AlNb-Based Alloy: Oxidation and Interdiffusion Behaviors, Acta Mater., 2007, 55, p 1427–1439CrossRef
19.
go back to reference Y. Zong, B. Shao, Y. Tian, and D. Shan, A Study of the Sharp Yield Point of a Ti-22Al-25Nb Alloy, J. Alloys Compd., 2017, 701, p 727–731CrossRef Y. Zong, B. Shao, Y. Tian, and D. Shan, A Study of the Sharp Yield Point of a Ti-22Al-25Nb Alloy, J. Alloys Compd., 2017, 701, p 727–731CrossRef
20.
go back to reference C.J. Cowen and C.J. Boehlert, Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-22Al-26Nb (At. Pct) and Ti-22Al-26Nb-5B (At. Pct), Metall. Mater. Trans. A, 2007, 38, p 26–34CrossRef C.J. Cowen and C.J. Boehlert, Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-22Al-26Nb (At. Pct) and Ti-22Al-26Nb-5B (At. Pct), Metall. Mater. Trans. A, 2007, 38, p 26–34CrossRef
21.
go back to reference T.K. Nandy, R.S. Mishra, and D. Banerjee, Creep Behaviour of an Orthorhombic Phase in a Ti-Al-Nb Alloy, Scr. Met. Mater., 1993, 28, p 569–574CrossRef T.K. Nandy, R.S. Mishra, and D. Banerjee, Creep Behaviour of an Orthorhombic Phase in a Ti-Al-Nb Alloy, Scr. Met. Mater., 1993, 28, p 569–574CrossRef
22.
go back to reference L. Germann, D. Banerjee, J.Y. Guédou, and J.L. Strudel, Effect of Composition on the Mechanical Properties of Newly Developed Ti2AlNb-Based Titanium Aluminide, Intermetallics, 2005, 13, p 920–924CrossRef L. Germann, D. Banerjee, J.Y. Guédou, and J.L. Strudel, Effect of Composition on the Mechanical Properties of Newly Developed Ti2AlNb-Based Titanium Aluminide, Intermetallics, 2005, 13, p 920–924CrossRef
23.
go back to reference K.H. Sim, G. Wang, T.J. Kim, and K.S. Ju, Fabrication of a High Strength and Ductility Ti-22Al-25Nb Alloy from High Energy Ball-Milled Powder by Spark Plasma Sintering, J. Alloys Compd., 2018, 741, p 1112–1120CrossRef K.H. Sim, G. Wang, T.J. Kim, and K.S. Ju, Fabrication of a High Strength and Ductility Ti-22Al-25Nb Alloy from High Energy Ball-Milled Powder by Spark Plasma Sintering, J. Alloys Compd., 2018, 741, p 1112–1120CrossRef
24.
go back to reference I.W. Hall and C.Y. Ni, Thermal Stability of an SCS-6/Ti-22Al-23Nb Composite, Mater. Sci. Eng. A, 1995, 192, p 987–993CrossRef I.W. Hall and C.Y. Ni, Thermal Stability of an SCS-6/Ti-22Al-23Nb Composite, Mater. Sci. Eng. A, 1995, 192, p 987–993CrossRef
25.
go back to reference Y.Q. Yang, Y. Zhu, Z.J. Ma, and Y. Chen, Formation of Interfacial Reaction Products in SCS-6SiC/Ti2AlNb Composites, Scr. Mater., 2004, 51, p 385–389CrossRef Y.Q. Yang, Y. Zhu, Z.J. Ma, and Y. Chen, Formation of Interfacial Reaction Products in SCS-6SiC/Ti2AlNb Composites, Scr. Mater., 2004, 51, p 385–389CrossRef
26.
go back to reference M. Behera, S. Raju, R. Mythili, and S. Saroja, Study of Kinetics of α ⇔ β Phase Transformation in Ti-4.4 mass% Ta-1.9 mass% Nb Alloy Using Differential Scanning Calorimetry, J. Therm. Anal. Calorim., 2016, 124, p 1217–1228CrossRef M. Behera, S. Raju, R. Mythili, and S. Saroja, Study of Kinetics of α ⇔ β Phase Transformation in Ti-4.4 mass% Ta-1.9 mass% Nb Alloy Using Differential Scanning Calorimetry, J. Therm. Anal. Calorim., 2016, 124, p 1217–1228CrossRef
27.
go back to reference J.C. Mishurda and V.K. Vasudevan, An Estimate of the Kinetics of the β0 to Orthorhombic Phase Transformation in the Nb-Ti-Al System, Scr. Mater., 2001, 45, p 677–684CrossRef J.C. Mishurda and V.K. Vasudevan, An Estimate of the Kinetics of the β0 to Orthorhombic Phase Transformation in the Nb-Ti-Al System, Scr. Mater., 2001, 45, p 677–684CrossRef
28.
go back to reference R.K. Gupta, B. Pant, V. Agarwala, and P.P. Sinha, Differential Scanning Calorimetry and Reaction Kinetics Studies of γ + α2 Ti Aluminide, Mater. Chem. Phys., 2012, 137, p 483–492CrossRef R.K. Gupta, B. Pant, V. Agarwala, and P.P. Sinha, Differential Scanning Calorimetry and Reaction Kinetics Studies of γ + α2 Ti Aluminide, Mater. Chem. Phys., 2012, 137, p 483–492CrossRef
29.
go back to reference J. Vázquez, C. Wagner, P. Villares, and R. Jiménez-Garay, A Theoretical Method for Determining the Crystallized Fraction and Kinetic Parameters by DSC, Using Non-isothermal Techniques, Acta Mater., 1996, 44, p 4807–4813CrossRef J. Vázquez, C. Wagner, P. Villares, and R. Jiménez-Garay, A Theoretical Method for Determining the Crystallized Fraction and Kinetic Parameters by DSC, Using Non-isothermal Techniques, Acta Mater., 1996, 44, p 4807–4813CrossRef
30.
go back to reference X.H. Lü, Yang Yq, Ma Zj, Liu Cx, Y. Chen, and Ai Yl, Kinetics and Mechanism of Interfacial Reaction in SCS-6SiC Continuous Fiber-Reinforced Ti-Al Intermetallic Matrix Composites, Trans. Nonferr. Met. Soc., 2006, 16, p 77–83CrossRef X.H. Lü, Yang Yq, Ma Zj, Liu Cx, Y. Chen, and Ai Yl, Kinetics and Mechanism of Interfacial Reaction in SCS-6SiC Continuous Fiber-Reinforced Ti-Al Intermetallic Matrix Composites, Trans. Nonferr. Met. Soc., 2006, 16, p 77–83CrossRef
31.
go back to reference M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, H. Li, and J. Yu, Dual Structure O + B2 for Enhancement of Hardness in Furnace-Cooled Ti2AlNb-Based Alloys by Powder Metallurgy, Adv. Powder Technol., 2017, 28, p 1719–1726CrossRef M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, H. Li, and J. Yu, Dual Structure O + B2 for Enhancement of Hardness in Furnace-Cooled Ti2AlNb-Based Alloys by Powder Metallurgy, Adv. Powder Technol., 2017, 28, p 1719–1726CrossRef
32.
go back to reference ASTM E18-94, Standard Test Method for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ASTM, Philadelphia, 1994 ASTM E18-94, Standard Test Method for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ASTM, Philadelphia, 1994
33.
go back to reference M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, and H. Li, Formation of Fine B2/β + O Structure and Enhancement of Hardness in the Aged Ti2AlNb-Based Alloys Prepared by Spark Plasma Sintering, Metall. Mater. Trans. A, 2017, 48, p 4365–4371CrossRef M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, and H. Li, Formation of Fine B2/β + O Structure and Enhancement of Hardness in the Aged Ti2AlNb-Based Alloys Prepared by Spark Plasma Sintering, Metall. Mater. Trans. A, 2017, 48, p 4365–4371CrossRef
34.
go back to reference H.Z. Niu, Y.F. Chen, D.L. Zhang, Y.S. Zhang, J.W. Lu, W. Zhang, and P.X. Zhang, Fabrication of a Powder Metallurgy Ti2AlNb-Based Alloy by Spark Plasma Sintering and Associated Microstructure Optimization, Mater. Des., 2016, 89, p 823–829CrossRef H.Z. Niu, Y.F. Chen, D.L. Zhang, Y.S. Zhang, J.W. Lu, W. Zhang, and P.X. Zhang, Fabrication of a Powder Metallurgy Ti2AlNb-Based Alloy by Spark Plasma Sintering and Associated Microstructure Optimization, Mater. Des., 2016, 89, p 823–829CrossRef
35.
go back to reference O.G. Khadzhieva, A.G. Illarionov, and A.A. Popov, Effect of Aging on Structure and Properties of Quenched Alloy Based on Orthorhombic Titanium Aluminide Ti2AlNb, Phys. Met. Metallog., 2014, 115, p 12–20CrossRef O.G. Khadzhieva, A.G. Illarionov, and A.A. Popov, Effect of Aging on Structure and Properties of Quenched Alloy Based on Orthorhombic Titanium Aluminide Ti2AlNb, Phys. Met. Metallog., 2014, 115, p 12–20CrossRef
36.
go back to reference C.J. Boehlert, Part III. The Tensile Behavior of Ti-Al-Nb O+ bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 2001, 32, p 1977–1988CrossRef C.J. Boehlert, Part III. The Tensile Behavior of Ti-Al-Nb O+ bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 2001, 32, p 1977–1988CrossRef
37.
go back to reference D. Li and C.J. Boehlert, Processing Effects on the Grain-Boundary Character Distribution of the Orthorhombic Phase in Ti-Al-Nb Alloys, Metall. Mater. Trans. A, 2005, 36, p 2569–2584CrossRef D. Li and C.J. Boehlert, Processing Effects on the Grain-Boundary Character Distribution of the Orthorhombic Phase in Ti-Al-Nb Alloys, Metall. Mater. Trans. A, 2005, 36, p 2569–2584CrossRef
38.
go back to reference C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O + BCC Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30, p 2305–2323CrossRef C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O + BCC Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30, p 2305–2323CrossRef
39.
go back to reference G. Sharma, R.V. Ramanujan, and G.P. Tiwari, Instability Mechanisms in Lamellar Microstructures, Acta Mater., 2000, 48, p 875–889CrossRef G. Sharma, R.V. Ramanujan, and G.P. Tiwari, Instability Mechanisms in Lamellar Microstructures, Acta Mater., 2000, 48, p 875–889CrossRef
40.
go back to reference S. Zherebtsov, M. Murzinova, G. Salishchev, and S.L. Semiatin, Spheroidization of the Lamellar Microstructure in Ti-6Al-4V Alloy During Warm Deformation and Annealing, Acta Mater., 2011, 59, p 4138–4150CrossRef S. Zherebtsov, M. Murzinova, G. Salishchev, and S.L. Semiatin, Spheroidization of the Lamellar Microstructure in Ti-6Al-4V Alloy During Warm Deformation and Annealing, Acta Mater., 2011, 59, p 4138–4150CrossRef
41.
go back to reference T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325, p 112–125CrossRef T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325, p 112–125CrossRef
42.
go back to reference P. Wanjara, R.A.L. Drew, J. Root, and S. Yue, Evidence for Stable Stoichiometric Ti2C at the Interface in TiC Particulate Reinforced Ti Alloy Composites, Acta Mater., 2000, 48, p 1443–1450CrossRef P. Wanjara, R.A.L. Drew, J. Root, and S. Yue, Evidence for Stable Stoichiometric Ti2C at the Interface in TiC Particulate Reinforced Ti Alloy Composites, Acta Mater., 2000, 48, p 1443–1450CrossRef
43.
go back to reference X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Microstructural Evolution and Mechanical Properties of Linear Friction Welded Ti2AlNb Joint During Solution and Aging Treatment, Mater. Sci. Eng. A, 2016, 668, p 125–136CrossRef X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Microstructural Evolution and Mechanical Properties of Linear Friction Welded Ti2AlNb Joint During Solution and Aging Treatment, Mater. Sci. Eng. A, 2016, 668, p 125–136CrossRef
44.
go back to reference D. Banerjee, The Intermetallic Ti2AlNb, Prog. Mater. Sci., 1997, 42, p 135–158CrossRef D. Banerjee, The Intermetallic Ti2AlNb, Prog. Mater. Sci., 1997, 42, p 135–158CrossRef
45.
go back to reference X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Effects of Post-weld Heat Treatment on Microstructure and Mechanical Properties of Linear Friction Welded Ti2AlNb Alloy, Mater. Des., 2016, 94, p 45–53CrossRef X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Effects of Post-weld Heat Treatment on Microstructure and Mechanical Properties of Linear Friction Welded Ti2AlNb Alloy, Mater. Des., 2016, 94, p 45–53CrossRef
46.
go back to reference B. Shao, S. Wan, D. Shan, B. Guo, and Y. Zong, Hydrogen-Induced Improvement of the Cylindrical Drawing Properties of a Ti-22Al-25Nb Alloy, Adv. Eng. Mater., 2017, 19, p 1600621CrossRef B. Shao, S. Wan, D. Shan, B. Guo, and Y. Zong, Hydrogen-Induced Improvement of the Cylindrical Drawing Properties of a Ti-22Al-25Nb Alloy, Adv. Eng. Mater., 2017, 19, p 1600621CrossRef
47.
go back to reference W. Chen, Z.Y. Chen, C.C. Wu, J.W. Li, Z.Y. Tang, and Q.J. Wang, The Effect of Annealing on Microstructure and Tensile Properties of Ti-22Al-25Nb Electron Beam Weld Joint, Intermetallics, 2016, 75, p 8–14CrossRef W. Chen, Z.Y. Chen, C.C. Wu, J.W. Li, Z.Y. Tang, and Q.J. Wang, The Effect of Annealing on Microstructure and Tensile Properties of Ti-22Al-25Nb Electron Beam Weld Joint, Intermetallics, 2016, 75, p 8–14CrossRef
48.
go back to reference W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Quantitative Analysis of the Effect of Heat Treatment on Microstructural Evolution and Microhardness of an Isothermally Forged Ti-22Al-25Nb (at.%) Orthorhombic Alloy, Intermetallics, 2014, 45, p 29–37CrossRef W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Quantitative Analysis of the Effect of Heat Treatment on Microstructural Evolution and Microhardness of an Isothermally Forged Ti-22Al-25Nb (at.%) Orthorhombic Alloy, Intermetallics, 2014, 45, p 29–37CrossRef
49.
go back to reference C.J. Boehlert, B.S. Majumdar, S. Krishnamurthy, and D.B. Miracle, Role of Matrix Microstructure on Room-Temperature Tensile Properties and Fiber-Strength Utilization of an Orthorhombic Ti-Alloy-Based Composite, Metall. Mater. Trans. A, 1997, 28, p 309–323CrossRef C.J. Boehlert, B.S. Majumdar, S. Krishnamurthy, and D.B. Miracle, Role of Matrix Microstructure on Room-Temperature Tensile Properties and Fiber-Strength Utilization of an Orthorhombic Ti-Alloy-Based Composite, Metall. Mater. Trans. A, 1997, 28, p 309–323CrossRef
50.
go back to reference Y.R. Zhang, Q. Cai, Y.C. Liu, Z.Q. Ma, C. Li, and H.J. Li, Evaluation of Precipitation Hardening in TiC-Reinforced Ti2AlNb-Based Alloys, Int. J. Min. Met. Mater., 2018, 25, p 453–458CrossRef Y.R. Zhang, Q. Cai, Y.C. Liu, Z.Q. Ma, C. Li, and H.J. Li, Evaluation of Precipitation Hardening in TiC-Reinforced Ti2AlNb-Based Alloys, Int. J. Min. Met. Mater., 2018, 25, p 453–458CrossRef
51.
go back to reference J. Roger, B. Gardiola, J. Andrieux, J.-C. Viala, and O. Dezellus, Synthesis of Ti Matrix Composites Reinforced with TiC Particles: Thermodynamic Equilibrium and Change in Microstructure, J. Mater. Sci., 2016, 52, p 4129–4141CrossRef J. Roger, B. Gardiola, J. Andrieux, J.-C. Viala, and O. Dezellus, Synthesis of Ti Matrix Composites Reinforced with TiC Particles: Thermodynamic Equilibrium and Change in Microstructure, J. Mater. Sci., 2016, 52, p 4129–4141CrossRef
52.
go back to reference T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn., 1965, 38, p 1881–1886CrossRef T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn., 1965, 38, p 1881–1886CrossRef
53.
go back to reference J.H. Flynn and L.A. Wall, General Treatment of the Thermogravimetry of Polymers, J. Res. Natl. Bur. Stand., 1966, 70, p 487–523CrossRef J.H. Flynn and L.A. Wall, General Treatment of the Thermogravimetry of Polymers, J. Res. Natl. Bur. Stand., 1966, 70, p 487–523CrossRef
54.
go back to reference J. Cheng, S. Zhu, Y. Yu, J. Yang, and W. Liu, Microstructure, Mechanical and Tribological Properties of TiAl-Based Composites Reinforced with High Volume Fraction of Nearly Network Ti2AlC Particulates, J. Mater. Sci. Technol., 2018, 34, p 670–678CrossRef J. Cheng, S. Zhu, Y. Yu, J. Yang, and W. Liu, Microstructure, Mechanical and Tribological Properties of TiAl-Based Composites Reinforced with High Volume Fraction of Nearly Network Ti2AlC Particulates, J. Mater. Sci. Technol., 2018, 34, p 670–678CrossRef
55.
go back to reference C. Popescu, Integral Method to Analyze the Kinetics of Heterogeneous Reactions Under Non-isothermal Conditions a Variant on the Ozawa–Flynn–Wall Method, Thermochim. Acta, 1996, 285, p 309–323CrossRef C. Popescu, Integral Method to Analyze the Kinetics of Heterogeneous Reactions Under Non-isothermal Conditions a Variant on the Ozawa–Flynn–Wall Method, Thermochim. Acta, 1996, 285, p 309–323CrossRef
56.
go back to reference Y. Shao, C. Liu, Z. Yan, H. Li, and Y. Liu, Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A Review, J. Mater. Sci. Technol., 2018, 34, p 737–744CrossRef Y. Shao, C. Liu, Z. Yan, H. Li, and Y. Liu, Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A Review, J. Mater. Sci. Technol., 2018, 34, p 737–744CrossRef
Metadata
Title
Precipitation of Carbides and Dissolution of Widmanstätten Structure for Enhanced Hardness in Ti2AlNb-Based Alloys
Authors
Yaran Zhang
Qi Cai
Yongchang Liu
Qianying Guo
Huijun Li
Publication date
04-03-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03965-9

Other articles of this Issue 3/2019

Journal of Materials Engineering and Performance 3/2019 Go to the issue

Premium Partners