Skip to main content
Top
Published in:

02-08-2024

Precise parameter estimation of PEM fuel cell via weighted mean of vectors optimizer

Authors: Badis Lekouaghet, Mohammed Amin Khelifa, Abdelkrim Boukabou

Published in: Journal of Computational Electronics | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper deals with the determination of the optimal values to be given for the seven unknown parameters of the proton exchange membrane fuel cell (PEMFC). To this end, the weighted mean of vectors optimizer (INFO) metaheuristic algorithm is applied to estimate these parameters by minimizing the sum of squared errors (SSEs) between the measured and calculated voltages of the PEMFC. Three commercial types of PEMFCs are investigated: (i) BCS 500 W Stack, (ii) NedStack PS6 Stack, and (iii) Horizon 500 W Stack. The accuracy of the applied INFO algorithm is verified by comparing the estimated voltage–current \((I-V)\) characteristics with the measured data. Furthermore, the estimated parameters of electrical PEMFCs, the minimum reached SSE, and the standard deviation Std values achieved by INFO are compared with the results obtained using other competitive metaheuristic optimization algorithms such as Honey badger algorithm, Gradient-based optimizer, Harris hawks optimization, and others. From the obtained results, the convergence curves show that the unknown parameters of the three PEMFCs are better estimated using the proposed INFO than other algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Basu, S.: Fuel cell science and technology. Springer, Berlin (2007) Basu, S.: Fuel cell science and technology. Springer, Berlin (2007)
2.
go back to reference Li, J., Gao, X., Cui, Y., Hu, J., Xu, G., Zhang, Z.: Accurate, efficient and reliable parameter extraction of PEM fuel cells using shuffled multi-simplexes search algorithm. Energy Convers. Manage. 206, 112501 (2020)CrossRef Li, J., Gao, X., Cui, Y., Hu, J., Xu, G., Zhang, Z.: Accurate, efficient and reliable parameter extraction of PEM fuel cells using shuffled multi-simplexes search algorithm. Energy Convers. Manage. 206, 112501 (2020)CrossRef
3.
go back to reference Venturelli, L., Santangelo, P.E., Tartarini, P.: Fuel cell systems and traditional technologies. Part II: Experimental study on dynamic behavior of PEMFC in stationary power generation. Appl. Therm. Eng. 29(17–18), 3469 (2009)CrossRef Venturelli, L., Santangelo, P.E., Tartarini, P.: Fuel cell systems and traditional technologies. Part II: Experimental study on dynamic behavior of PEMFC in stationary power generation. Appl. Therm. Eng. 29(17–18), 3469 (2009)CrossRef
4.
go back to reference Rajashekara, K., Rathore, A.K.: Renewable energy devices and systems with simulations in MATLAB® and ANSYS®, pp. 291–318. CRC Press, Boca Raton (2017)CrossRef Rajashekara, K., Rathore, A.K.: Renewable energy devices and systems with simulations in MATLAB® and ANSYS®, pp. 291–318. CRC Press, Boca Raton (2017)CrossRef
5.
go back to reference Blaabjerg, F., Ionel, D.M.: Renewable energy devices and systems with simulations in MATLAB® and ANSYS®. CRC Press, Boca Raton (2017)CrossRef Blaabjerg, F., Ionel, D.M.: Renewable energy devices and systems with simulations in MATLAB® and ANSYS®. CRC Press, Boca Raton (2017)CrossRef
6.
go back to reference Yang, B., Wang, J., Zhang, M., Shu, H., Yu, T., Zhang, X., Yao, W., Sun, L.: A state-of-the-art survey of solid oxide fuel cell parameter identification: modelling, methodology, and perspectives. Energy Convers. Manage. 213, 112856 (2020)CrossRef Yang, B., Wang, J., Zhang, M., Shu, H., Yu, T., Zhang, X., Yao, W., Sun, L.: A state-of-the-art survey of solid oxide fuel cell parameter identification: modelling, methodology, and perspectives. Energy Convers. Manage. 213, 112856 (2020)CrossRef
7.
go back to reference Yang, B., Li, D., Zeng, C., Chen, Y., Guo, Z., Wang, J., Shu, H., Yu, T., Zhu, J.: Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms. Energy 228, 120592 (2021)CrossRef Yang, B., Li, D., Zeng, C., Chen, Y., Guo, Z., Wang, J., Shu, H., Yu, T., Zhu, J.: Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms. Energy 228, 120592 (2021)CrossRef
8.
go back to reference Ashraf, H., Abdellatif, S.O., Elkholy, M.M., El-Fergany, A.A.: Computational techniques based on artificial intelligence for extracting optimal parameters of PEMFCs: survey and insights. Arch. Comput. Methods Eng. 29(6), 3943 (2022)MathSciNetCrossRef Ashraf, H., Abdellatif, S.O., Elkholy, M.M., El-Fergany, A.A.: Computational techniques based on artificial intelligence for extracting optimal parameters of PEMFCs: survey and insights. Arch. Comput. Methods Eng. 29(6), 3943 (2022)MathSciNetCrossRef
9.
go back to reference Ye, M., Wang, X., Xu, Y.: Parameter extraction of solar cells using particle swarm optimization. J. Appl. Phys. 105(9), 094502 (2009)CrossRef Ye, M., Wang, X., Xu, Y.: Parameter extraction of solar cells using particle swarm optimization. J. Appl. Phys. 105(9), 094502 (2009)CrossRef
10.
go back to reference Hu, P., Cao, G.Y., Zhu, X.J., Li, J.: Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg-Marquardt neural network. Simul. Model. Pract. Theory 18(5), 574 (2010)CrossRef Hu, P., Cao, G.Y., Zhu, X.J., Li, J.: Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg-Marquardt neural network. Simul. Model. Pract. Theory 18(5), 574 (2010)CrossRef
11.
go back to reference Askarzadeh, A., Rezazadeh, A.: Optimization of PEMFC model parameters with a modified particle swarm optimization. Int. J. Energy Res. 35(14), 1258 (2010)CrossRef Askarzadeh, A., Rezazadeh, A.: Optimization of PEMFC model parameters with a modified particle swarm optimization. Int. J. Energy Res. 35(14), 1258 (2010)CrossRef
12.
go back to reference Li, Q., Chen, W., Wang, Y., Liu, S., Jia, J.: Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization. IEEE Trans. Industr. Electron. 58(6), 2410 (2011)CrossRef Li, Q., Chen, W., Wang, Y., Liu, S., Jia, J.: Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization. IEEE Trans. Industr. Electron. 58(6), 2410 (2011)CrossRef
13.
go back to reference Tan, J., Hu, H., Liu, S., Chen, C., Xuan, D.: Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance. Int. J. Hydrogen Energy 47(84), 35790 (2022)CrossRef Tan, J., Hu, H., Liu, S., Chen, C., Xuan, D.: Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance. Int. J. Hydrogen Energy 47(84), 35790 (2022)CrossRef
14.
go back to reference Özdemir, M.T.: Optimal parameter estimation of polymer electrolyte membrane fuel cells model with chaos embedded particle swarm optimization. Int. J. Hydrog. Energy 46(30), 16465 (2021)CrossRef Özdemir, M.T.: Optimal parameter estimation of polymer electrolyte membrane fuel cells model with chaos embedded particle swarm optimization. Int. J. Hydrog. Energy 46(30), 16465 (2021)CrossRef
15.
go back to reference Yakout, A.H., Kotb, H., AboRas, K.M., Hasanien, H.M.: Comparison among different recent metaheuristic algorithms for parameters estimation of solid oxide fuel cell: steady-state and dynamic models. Alex. Eng. J. 61(11), 8507 (2022)CrossRef Yakout, A.H., Kotb, H., AboRas, K.M., Hasanien, H.M.: Comparison among different recent metaheuristic algorithms for parameters estimation of solid oxide fuel cell: steady-state and dynamic models. Alex. Eng. J. 61(11), 8507 (2022)CrossRef
16.
go back to reference Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 192, 84 (2022)MathSciNetCrossRef Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 192, 84 (2022)MathSciNetCrossRef
17.
go back to reference Ali, M., El-Hameed, M., Farahat, M.: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew. Energy 111, 455 (2017)CrossRef Ali, M., El-Hameed, M., Farahat, M.: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew. Energy 111, 455 (2017)CrossRef
18.
go back to reference Nadimi-Shahraki, M.H., Taghian, S., Mirjalili, S.: An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 166, 113917 (2021)CrossRef Nadimi-Shahraki, M.H., Taghian, S., Mirjalili, S.: An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 166, 113917 (2021)CrossRef
19.
go back to reference Diab, A.A.Z., Abdul-Ghaffar, H.I., Ahmed, A.A., Ramadan, H.A.: An effective model parameter estimation of PEMFCs using GWO algorithm and its variants. IET Renew. Power Gener. 16(7), 1380 (2021)CrossRef Diab, A.A.Z., Abdul-Ghaffar, H.I., Ahmed, A.A., Ramadan, H.A.: An effective model parameter estimation of PEMFCs using GWO algorithm and its variants. IET Renew. Power Gener. 16(7), 1380 (2021)CrossRef
20.
go back to reference Encalada-Dávila, Á., Echeverría, S., Santana-Villamar, J., Cede no, G., Espinoza-Andaluz, M.: Optimization algorithms: optimal parameters computation for modeling the polarization curves of a PEFC considering the effect of the relative humidity. Energies 14(18), 5631 (2021)CrossRef Encalada-Dávila, Á., Echeverría, S., Santana-Villamar, J., Cede no, G., Espinoza-Andaluz, M.: Optimization algorithms: optimal parameters computation for modeling the polarization curves of a PEFC considering the effect of the relative humidity. Energies 14(18), 5631 (2021)CrossRef
21.
go back to reference Rezk, H., Ferahtia, S., Djeroui, A., Chouder, A., Houari, A., Machmoum, M., Abdelkareem, M.A.: Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer. Energy 239, 122096 (2022)CrossRef Rezk, H., Ferahtia, S., Djeroui, A., Chouder, A., Houari, A., Machmoum, M., Abdelkareem, M.A.: Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer. Energy 239, 122096 (2022)CrossRef
22.
go back to reference Khelifa, M.A., Lekouaghet, B., Boukabou, A.: Symmetric chaotic gradient-based optimizer algorithm for efficient estimation of PV parameters. Optik 259, 168873 (2022)CrossRef Khelifa, M.A., Lekouaghet, B., Boukabou, A.: Symmetric chaotic gradient-based optimizer algorithm for efficient estimation of PV parameters. Optik 259, 168873 (2022)CrossRef
23.
go back to reference Ahmadianfar, I., Bozorg-Haddad, O., Chu, X.: Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf. Sci. 540, 131 (2020)MathSciNetCrossRef Ahmadianfar, I., Bozorg-Haddad, O., Chu, X.: Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf. Sci. 540, 131 (2020)MathSciNetCrossRef
24.
go back to reference Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849 (2019)CrossRef Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849 (2019)CrossRef
25.
go back to reference Mossa, M.A., Kamel, O.M., Sultan, H.M., Diab, A.A.Z.: Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms. Neural Comput. Appl. 33(11), 5555 (2020)CrossRef Mossa, M.A., Kamel, O.M., Sultan, H.M., Diab, A.A.Z.: Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms. Neural Comput. Appl. 33(11), 5555 (2020)CrossRef
26.
go back to reference Naik, M.K., Panda, R., Wunnava, A., Jena, B., Abraham, A.: A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimed. Tools Appl. 80(28–29), 35543 (2021)CrossRef Naik, M.K., Panda, R., Wunnava, A., Jena, B., Abraham, A.: A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimed. Tools Appl. 80(28–29), 35543 (2021)CrossRef
27.
go back to reference Menesy, A.S., Sultan, H.M., Selim, A., Ashmawy, M.G., Kamel, S.: Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 8, 1146 (2020)CrossRef Menesy, A.S., Sultan, H.M., Selim, A., Ashmawy, M.G., Kamel, S.: Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 8, 1146 (2020)CrossRef
28.
go back to reference Wang, J., Yang, B., Chen, Y., Zeng, K., Zhang, H., Shu, H., Chen, Y.: Novel phasianidae inspired peafowl (Pavo muticus/cristatus) optimization algorithm: design, evaluation, and SOFC models parameter estimation. Sustain. Energy Technol. Assess. 50, 101825 (2022) Wang, J., Yang, B., Chen, Y., Zeng, K., Zhang, H., Shu, H., Chen, Y.: Novel phasianidae inspired peafowl (Pavo muticus/cristatus) optimization algorithm: design, evaluation, and SOFC models parameter estimation. Sustain. Energy Technol. Assess. 50, 101825 (2022)
29.
go back to reference Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H., Gandomi, A.H.: INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 195, 116516 (2022)CrossRef Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H., Gandomi, A.H.: INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 195, 116516 (2022)CrossRef
30.
go back to reference Espinoza-Andaluz, M., Santana, J., Andersson, M.: Empirical correlations for the performance of a PEFC considering relative humidity of fuel and oxidant gases. Int. J. Hydrog. Energy 45(54), 29763–29773 (2020)CrossRef Espinoza-Andaluz, M., Santana, J., Andersson, M.: Empirical correlations for the performance of a PEFC considering relative humidity of fuel and oxidant gases. Int. J. Hydrog. Energy 45(54), 29763–29773 (2020)CrossRef
Metadata
Title
Precise parameter estimation of PEM fuel cell via weighted mean of vectors optimizer
Authors
Badis Lekouaghet
Mohammed Amin Khelifa
Abdelkrim Boukabou
Publication date
02-08-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02204-2