Skip to main content
Top

27-03-2024 | Research Article

Predicting an EEG-Based hypnotic time estimation with non-linear kernels of support vector machine algorithm

Authors: Hoda Taghilou, Mazaher Rezaei, Alireza Valizadeh, Touraj Hashemi Nosratabad, Mohammad Ali Nazari

Published in: Cognitive Neurodynamics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Our ability to measure time is vital for daily life, technology use, and even mental health; however, separating pure time perception from other mental processes (like emotions) is a research challenge requiring precise tests to isolate and understand brain activity solely related to time estimation. To address this challenge, we designed an experiment utilizing hypnosis alongside electroencephalography (EEG) to assess differences in time estimation, namely underestimation and overestimation. Hypnotic induction is designed to reduce awareness and meta-awareness, facilitating a detachment from the immediate environment. This reduced information processing load minimizes the need for elaborate internal thought during hypnosis, further simplifying the cognitive landscape. To predict time perception based on brain activity during extended durations (5 min), we employed artificial intelligence techniques. Utilizing Support Vector Machines (SVMs) with both radial basis function (RBF) and polynomial kernels, we assessed their effectiveness in classifying time perception-related brain patterns. We evaluated various feature combinations and different algorithms to identify the most accurate configuration. Our analysis revealed an impressive 80.9% classification accuracy for time perception detection using the RBF kernel, demonstrating the potential of AI in decoding this complex cognitive function.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbasi SF, Ahmad J, Tahir A, Awais M, Chen C, Irfan M, Siddiqa HA, Waqas AB, Long X, Yin B (2020) EEG-based neonatal sleep-wake classification using multilayer perceptron neural network. IEEE Access 8:183025–183034CrossRef Abbasi SF, Ahmad J, Tahir A, Awais M, Chen C, Irfan M, Siddiqa HA, Waqas AB, Long X, Yin B (2020) EEG-based neonatal sleep-wake classification using multilayer perceptron neural network. IEEE Access 8:183025–183034CrossRef
go back to reference Albayrak M (2009) The detection of an epileptiform activity on EEG signals by using data mining process. Technol Appl Sci 4(1):1–12 Albayrak M (2009) The detection of an epileptiform activity on EEG signals by using data mining process. Technol Appl Sci 4(1):1–12
go back to reference Allman MJ, Meck WH (2012) Pathophysiological distortions in time perception and timed performance. Brain 135(3):656–677PubMedCrossRef Allman MJ, Meck WH (2012) Pathophysiological distortions in time perception and timed performance. Brain 135(3):656–677PubMedCrossRef
go back to reference Alotaiby T, Abd El-Samie FE, Alshebeili SA, Ahmad I (2015) A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process 2015(1):1–21CrossRef Alotaiby T, Abd El-Samie FE, Alshebeili SA, Ahmad I (2015) A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process 2015(1):1–21CrossRef
go back to reference Arnal LH, Doelling KB, Poeppel D (2015) Delta–beta coupled oscillations underlie temporal prediction accuracy. Cereb Cortex 25(9):3077–3085PubMedCrossRef Arnal LH, Doelling KB, Poeppel D (2015) Delta–beta coupled oscillations underlie temporal prediction accuracy. Cereb Cortex 25(9):3077–3085PubMedCrossRef
go back to reference Basgol H, Ayhan I, Ugur E (2021) Time perception: A review on psychological, computational and robotic models. IEEE Trans. Cognit. Dev. Syst. 14(2):301–315CrossRef Basgol H, Ayhan I, Ugur E (2021) Time perception: A review on psychological, computational and robotic models. IEEE Trans. Cognit. Dev. Syst. 14(2):301–315CrossRef
go back to reference Bashivan P, Rish I, Yeasin M, Codella N (2015) Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 Bashivan P, Rish I, Yeasin M, Codella N (2015) Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:​1511.​06448
go back to reference Behzadifard B, Sabaghypour S, Farkhondeh Tale Navi F, Nazari MA (2022) Training the brain to time: the effect of neurofeedback of SMR–Beta1 rhythm on time perception in healthy adults. Exp Brain Res 240(7–8):2027–2038PubMedCrossRef Behzadifard B, Sabaghypour S, Farkhondeh Tale Navi F, Nazari MA (2022) Training the brain to time: the effect of neurofeedback of SMR–Beta1 rhythm on time perception in healthy adults. Exp Brain Res 240(7–8):2027–2038PubMedCrossRef
go back to reference Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188CrossRef Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188CrossRef
go back to reference Block RA, Gruber RP (2014) Time perception, attention, and memory: a selective review. Acta Physiol (oxf) 149:129–133 Block RA, Gruber RP (2014) Time perception, attention, and memory: a selective review. Acta Physiol (oxf) 149:129–133
go back to reference Born M (1962) Einstein's theory of relativity. Courier Corporation Born M (1962) Einstein's theory of relativity. Courier Corporation
go back to reference Bortoletto M, Cook A, Cunnington R (2011) Motor timing and the preparation for sequential actions. Brain Cogn 75(2):196–204PubMedCrossRef Bortoletto M, Cook A, Cunnington R (2011) Motor timing and the preparation for sequential actions. Brain Cogn 75(2):196–204PubMedCrossRef
go back to reference Carver CS (2004) Self-regulation of action and affect. In: Baumeister RF, Vohs KD (eds) Handbook of self-regulation: research, regulation, theory, and applications. The Guillford Press, p 39 Carver CS (2004) Self-regulation of action and affect. In: Baumeister RF, Vohs KD (eds) Handbook of self-regulation: research, regulation, theory, and applications. The Guillford Press, p 39
go back to reference Chen Y, Zhang Z, Guang X, Guo X, Yuan H, Zhang T (2007) Attentional modulation of time perception: an ERP study. Acta Psychol Sin 39(06):1002 Chen Y, Zhang Z, Guang X, Guo X, Yuan H, Zhang T (2007) Attentional modulation of time perception: an ERP study. Acta Psychol Sin 39(06):1002
go back to reference Chen Y, Huang X, Luo Y, Peng C, Liu C (2010) Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task. Brain Res 1325:100–111PubMedCrossRef Chen Y, Huang X, Luo Y, Peng C, Liu C (2010) Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task. Brain Res 1325:100–111PubMedCrossRef
go back to reference Cirelli LK, Bosnyak D, Manning FC, Spinelli C, Marie C, Fujioka T, Ghahremani A, Trainor LJ (2014) Beat-induced fluctuations in auditory cortical beta-band activity: using EEG to measure age-related changes. Front Psychol 5:742PubMedPubMedCentralCrossRef Cirelli LK, Bosnyak D, Manning FC, Spinelli C, Marie C, Fujioka T, Ghahremani A, Trainor LJ (2014) Beat-induced fluctuations in auditory cortical beta-band activity: using EEG to measure age-related changes. Front Psychol 5:742PubMedPubMedCentralCrossRef
go back to reference Cooper LF, Erickson MH (2004) Time distortion in hypnosis. An Experimental and Clinical Investigation Cooper LF, Erickson MH (2004) Time distortion in hypnosis. An Experimental and Clinical Investigation
go back to reference Correa Á, Lupiáñez J, Tudela P (2005) Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychon Bull Rev 12(2):328–334PubMedCrossRef Correa Á, Lupiáñez J, Tudela P (2005) Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychon Bull Rev 12(2):328–334PubMedCrossRef
go back to reference Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University PressCrossRef Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University PressCrossRef
go back to reference da Silva K, Curvina M, Araújo S, Rocha K, Marinho FV, Magalhães FE, Teixeira S, Bastos V, Ribeiro P, Silva-Júnior F (2021) Male practitioners of physical activity present lower absolute power of beta band in time perception test. Neurosci Lett 764:136210PubMedCrossRef da Silva K, Curvina M, Araújo S, Rocha K, Marinho FV, Magalhães FE, Teixeira S, Bastos V, Ribeiro P, Silva-Júnior F (2021) Male practitioners of physical activity present lower absolute power of beta band in time perception test. Neurosci Lett 764:136210PubMedCrossRef
go back to reference Daud S, Sudirman R (2015) Butterworth bandpass and stationary wavelet transform filter comparison for electroencephalography signal. In: 2015 6th international conference on intelligent systems, modelling and simulation Daud S, Sudirman R (2015) Butterworth bandpass and stationary wavelet transform filter comparison for electroencephalography signal. In: 2015 6th international conference on intelligent systems, modelling and simulation
go back to reference Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21PubMedCrossRef Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21PubMedCrossRef
go back to reference Dini H, Ghassemi F, Sendi M (2020) Investigation of brain functional networks in children suffering from attention deficit hyperactivity disorder. Brain Topogr 33(6):733–750PubMedCrossRef Dini H, Ghassemi F, Sendi M (2020) Investigation of brain functional networks in children suffering from attention deficit hyperactivity disorder. Brain Topogr 33(6):733–750PubMedCrossRef
go back to reference Droit-Volet S, Brunot S, Niedenthal P (2004) BRIEF REPORT Perception of the duration of emotional events. Cogn Emot 18(6):849–858CrossRef Droit-Volet S, Brunot S, Niedenthal P (2004) BRIEF REPORT Perception of the duration of emotional events. Cogn Emot 18(6):849–858CrossRef
go back to reference Effron DA, Niedenthal PM, Gil S, Droit-Volet S (2006) Embodied temporal perception of emotion. Emotion 6(1):1PubMedCrossRef Effron DA, Niedenthal PM, Gil S, Droit-Volet S (2006) Embodied temporal perception of emotion. Emotion 6(1):1PubMedCrossRef
go back to reference Forgas JP, Baumeister RF, Tice DM (2009) The psychology of self-regulation: An introductory review. Psychology of Self-Regulation: Cognitive, Affective, and Motivational Processes 11:1–17 Forgas JP, Baumeister RF, Tice DM (2009) The psychology of self-regulation: An introductory review. Psychology of Self-Regulation: Cognitive, Affective, and Motivational Processes 11:1–17
go back to reference Fraisse P (1978) Time and rhythm perception. In Perceptual coding (pp. 203–254). Elsevier Fraisse P (1978) Time and rhythm perception. In Perceptual coding (pp. 203–254). Elsevier
go back to reference Frank A (2011) About time: Cosmology and culture at the twilight of the big bang. Simon and Schuster Frank A (2011) About time: Cosmology and culture at the twilight of the big bang. Simon and Schuster
go back to reference Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32(5):1791–1802PubMedPubMedCentralCrossRef Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32(5):1791–1802PubMedPubMedCentralCrossRef
go back to reference Gabard-Durnam LJ, Mendez Leal AS, Wilkinson CL, Levin AR (2018) The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front Neurosci 12:97PubMedPubMedCentralCrossRef Gabard-Durnam LJ, Mendez Leal AS, Wilkinson CL, Levin AR (2018) The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front Neurosci 12:97PubMedPubMedCentralCrossRef
go back to reference Gardner AB, Krieger AM, Vachtsevanos G, Litt B, Kaelbing LP (2006) One-class novelty detection for seizure analysis from intracranial EEG. J Mach Learn Res 7(6):1025–1044 Gardner AB, Krieger AM, Vachtsevanos G, Litt B, Kaelbing LP (2006) One-class novelty detection for seizure analysis from intracranial EEG. J Mach Learn Res 7(6):1025–1044
go back to reference Ghaderi AH, Moradkhani S, Haghighatfard A, Akrami F, Khayyer Z, Balcı F (2018) Time estimation and beta segregation: an EEG study and graph theoretical approach. PLoS ONE 13(4):e0195380PubMedPubMedCentralCrossRef Ghaderi AH, Moradkhani S, Haghighatfard A, Akrami F, Khayyer Z, Balcı F (2018) Time estimation and beta segregation: an EEG study and graph theoretical approach. PLoS ONE 13(4):e0195380PubMedPubMedCentralCrossRef
go back to reference Gräber S, Hertrich I, Daum I, Spieker S, Ackermann H (2002) Speech perception deficits in Parkinson’s disease: underestimation of time intervals compromises identification of durational phonetic contrasts. Brain Lang 82(1):65–74PubMedCrossRef Gräber S, Hertrich I, Daum I, Spieker S, Ackermann H (2002) Speech perception deficits in Parkinson’s disease: underestimation of time intervals compromises identification of durational phonetic contrasts. Brain Lang 82(1):65–74PubMedCrossRef
go back to reference Graf P, Grondin S (2006) Time perception and time-based prospective memory. Timing the future: The case for a time-based prospective memory, 1–24 Graf P, Grondin S (2006) Time perception and time-based prospective memory. Timing the future: The case for a time-based prospective memory, 1–24
go back to reference Grondin S (2010) Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72(3):561–582PubMedCrossRef Grondin S (2010) Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72(3):561–582PubMedCrossRef
go back to reference Gulberti A, Moll CKE, Hamel W, Buhmann C, Koeppen J, Boelmans K, Zittel S, Gerloff C, Westphal M, Schneider T (2015) Predictive timing functions of cortical beta oscillations are impaired in Parkinson’s disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus. NeuroImage Clin 9:436–449PubMedPubMedCentralCrossRef Gulberti A, Moll CKE, Hamel W, Buhmann C, Koeppen J, Boelmans K, Zittel S, Gerloff C, Westphal M, Schneider T (2015) Predictive timing functions of cortical beta oscillations are impaired in Parkinson’s disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus. NeuroImage Clin 9:436–449PubMedPubMedCentralCrossRef
go back to reference Halsband U, Mueller S, Hinterberger T, Strickner S (2009) Plasticity changes in the brain in hypnosis and meditation. Contemp Hypn 26(4):194–215CrossRef Halsband U, Mueller S, Hinterberger T, Strickner S (2009) Plasticity changes in the brain in hypnosis and meditation. Contemp Hypn 26(4):194–215CrossRef
go back to reference Han J, Dong F, Xu Y (2009) Entropy feature extraction on flow pattern of gas/liquid two-phase flow based on cross-section measurement. J Phys Conf Ser 147:012041CrossRef Han J, Dong F, Xu Y (2009) Entropy feature extraction on flow pattern of gas/liquid two-phase flow based on cross-section measurement. J Phys Conf Ser 147:012041CrossRef
go back to reference Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. SpringerCrossRef Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. SpringerCrossRef
go back to reference Heap M, Aravind K (2002) Hartland’s medical and dental hypnosis.. London: Churchill Livingston. In: Harcourt Health Sciences Heap M, Aravind K (2002) Hartland’s medical and dental hypnosis.. London: Churchill Livingston. In: Harcourt Health Sciences
go back to reference Hicks RE, Miller GW, Gaes G, Bierman K (1977) Concurrent processing demands and the experience of time-in-passing. Am J Psychol 90(3):431–446CrossRef Hicks RE, Miller GW, Gaes G, Bierman K (1977) Concurrent processing demands and the experience of time-in-passing. Am J Psychol 90(3):431–446CrossRef
go back to reference Hjorth B (1970) EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29(3):306–310PubMedCrossRef Hjorth B (1970) EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29(3):306–310PubMedCrossRef
go back to reference Hosseini Houripasand M, Sabaghypour S, Farkhondeh Tale Navi F, Nazari MA (2023) Time distortions induced by high-arousing emotional compared to low-arousing neutral faces: an event-related potential study. Psychol Res 87:1836–1847PubMedCrossRef Hosseini Houripasand M, Sabaghypour S, Farkhondeh Tale Navi F, Nazari MA (2023) Time distortions induced by high-arousing emotional compared to low-arousing neutral faces: an event-related potential study. Psychol Res 87:1836–1847PubMedCrossRef
go back to reference Huang X, Altahat S, Tran D, Sharma D (2012) Human identification with electroencephalogram (EEG) signal processing. In: 2012 International symposium on communications and information technologies (ISCIT) Huang X, Altahat S, Tran D, Sharma D (2012) Human identification with electroencephalogram (EEG) signal processing. In: 2012 International symposium on communications and information technologies (ISCIT)
go back to reference Im S-H, Varma S (2018) Distorted time perception during flow as revealed by an attention-demanding cognitive task. Creat Res J 30(3):295–304CrossRef Im S-H, Varma S (2018) Distorted time perception during flow as revealed by an attention-demanding cognitive task. Creat Res J 30(3):295–304CrossRef
go back to reference Jenke R, Peer A, Buss M (2014) Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput 5(3):327–339CrossRef Jenke R, Peer A, Buss M (2014) Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput 5(3):327–339CrossRef
go back to reference Jo H-G, Hinterberger T, Wittmann M, Schmidt S (2015) Do meditators have higher awareness of their intentions to act? Cortex 65:149–158PubMedCrossRef Jo H-G, Hinterberger T, Wittmann M, Schmidt S (2015) Do meditators have higher awareness of their intentions to act? Cortex 65:149–158PubMedCrossRef
go back to reference Kaiser JF (1990) On a simple algorithm to calculate the'energy'of a signal. In: International conference on acoustics, speech, and signal processing Kaiser JF (1990) On a simple algorithm to calculate the'energy'of a signal. In: International conference on acoustics, speech, and signal processing
go back to reference Klug M, Gramann K (2021) Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments. Eur J Neurosci 54(12):8406–8420PubMedCrossRef Klug M, Gramann K (2021) Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments. Eur J Neurosci 54(12):8406–8420PubMedCrossRef
go back to reference Kononowicz TW, van Rijn H (2015) Single trial beta oscillations index time estimation. Neuropsychologia 75:381–389PubMedCrossRef Kononowicz TW, van Rijn H (2015) Single trial beta oscillations index time estimation. Neuropsychologia 75:381–389PubMedCrossRef
go back to reference Kononowicz TW, Van Rijn H, Meck WH (2018) Timing and time perception: A critical review of neural timing signatures before, during, and after the to-be-timed interval. Stevens’ Handbook Exp Psychol Cognitive Neurosci 1:1–38 Kononowicz TW, Van Rijn H, Meck WH (2018) Timing and time perception: A critical review of neural timing signatures before, during, and after the to-be-timed interval. Stevens’ Handbook Exp Psychol Cognitive Neurosci 1:1–38
go back to reference Lawson RA, Yarnall AJ, Duncan GW, Breen DP, Khoo TK, Williams-Gray CH, Barker RA, Collerton D, Taylor J-P, Burn DJ (2016) Cognitive decline and quality of life in incident Parkinson’s disease: the role of attention. Parkinsonism Relat Disord 27:47–53PubMedPubMedCentralCrossRef Lawson RA, Yarnall AJ, Duncan GW, Breen DP, Khoo TK, Williams-Gray CH, Barker RA, Collerton D, Taylor J-P, Burn DJ (2016) Cognitive decline and quality of life in incident Parkinson’s disease: the role of attention. Parkinsonism Relat Disord 27:47–53PubMedPubMedCentralCrossRef
go back to reference Lin Y-W, Zhou Y, Faghri F, Shaw MJ, Campbell RH (2019) Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PLoS ONE 14(7):e0218942PubMedPubMedCentralCrossRef Lin Y-W, Zhou Y, Faghri F, Shaw MJ, Campbell RH (2019) Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PLoS ONE 14(7):e0218942PubMedPubMedCentralCrossRef
go back to reference Liu Z (2011) A method of SVM with normalization in intrusion detection. Procedia Environ Sci 11:256–262CrossRef Liu Z (2011) A method of SVM with normalization in intrusion detection. Procedia Environ Sci 11:256–262CrossRef
go back to reference Marcano-Cedeño A, Quintanilla-Domínguez J, Cortina-Januchs M, Andina D (2010) Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network. In: IECON 2010–36th annual conference on IEEE industrial electronics society Marcano-Cedeño A, Quintanilla-Domínguez J, Cortina-Januchs M, Andina D (2010) Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network. In: IECON 2010–36th annual conference on IEEE industrial electronics society
go back to reference Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods 164(1):177–190PubMedCrossRef Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods 164(1):177–190PubMedCrossRef
go back to reference Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. BioEssays 22(1):94–103PubMedCrossRef Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. BioEssays 22(1):94–103PubMedCrossRef
go back to reference Memar P, Faradji F (2017) A novel multi-class EEG-based sleep stage classification system. IEEE Trans Neural Syst Rehabil Eng 26(1):84–95CrossRef Memar P, Faradji F (2017) A novel multi-class EEG-based sleep stage classification system. IEEE Trans Neural Syst Rehabil Eng 26(1):84–95CrossRef
go back to reference Michielli N, Acharya UR, Molinari F (2019) Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med 106:71–81PubMedCrossRef Michielli N, Acharya UR, Molinari F (2019) Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med 106:71–81PubMedCrossRef
go back to reference Mitrani L, Shekerdjiiski S, Gourevitch A, Yanev S (1977) Identification of short time intervals under LSD25 and mescaline. Act Nerv Super 19(2):103–104 Mitrani L, Shekerdjiiski S, Gourevitch A, Yanev S (1977) Identification of short time intervals under LSD25 and mescaline. Act Nerv Super 19(2):103–104
go back to reference Naish PL (2001) Hypnotic time perception: busy beaver or tardy timekeeper? Contemp Hypn 18(2):87–99CrossRef Naish PL (2001) Hypnotic time perception: busy beaver or tardy timekeeper? Contemp Hypn 18(2):87–99CrossRef
go back to reference Nasiri JA, Naghibzadeh M, Yazdi HS, Naghibzadeh B (2009) ECG arrhythmia classification with support vector machines and genetic algorithm. In: 2009 Third UKSim European Symposium on Computer Modeling and Simulation Nasiri JA, Naghibzadeh M, Yazdi HS, Naghibzadeh B (2009) ECG arrhythmia classification with support vector machines and genetic algorithm. In: 2009 Third UKSim European Symposium on Computer Modeling and Simulation
go back to reference Newton I (1962) Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world. Univ of California Press Newton I (1962) Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world. Univ of California Press
go back to reference Ng KK, Penney TB (2014) Probing interval timing with scalp-recorded electroencephalography (EEG). Neurobiol Interval Tim 829:187–207CrossRef Ng KK, Penney TB (2014) Probing interval timing with scalp-recorded electroencephalography (EEG). Neurobiol Interval Tim 829:187–207CrossRef
go back to reference Nobre AC, Rohenkohl G, Stokes MG (2012) Nervous anticipation: Top-down biasing across space and time Nobre AC, Rohenkohl G, Stokes MG (2012) Nervous anticipation: Top-down biasing across space and time
go back to reference Noulhiane M, Mella N, Samson S, Ragot R, Pouthas V (2007) How emotional auditory stimuli modulate time perception. Emotion 7(4):697PubMedCrossRef Noulhiane M, Mella N, Samson S, Ragot R, Pouthas V (2007) How emotional auditory stimuli modulate time perception. Emotion 7(4):697PubMedCrossRef
go back to reference Ocak H (2013) A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J Med Syst 37(2):1–9CrossRef Ocak H (2013) A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J Med Syst 37(2):1–9CrossRef
go back to reference Ogden RS, Dobbins C, Slade K, McIntyre J, Fairclough S (2022) The psychophysiological mechanisms of real-world time experience. Sci Rep 12(1):1–10CrossRef Ogden RS, Dobbins C, Slade K, McIntyre J, Fairclough S (2022) The psychophysiological mechanisms of real-world time experience. Sci Rep 12(1):1–10CrossRef
go back to reference O’Hanlon JF, McGrath JJ, McCauley ME (1974) Body temperature and temporal acuity. J Exp Psychol 102(5):788PubMedCrossRef O’Hanlon JF, McGrath JJ, McCauley ME (1974) Body temperature and temporal acuity. J Exp Psychol 102(5):788PubMedCrossRef
go back to reference Owusu E, Zhan Y, Mao QR (2014) An SVM-AdaBoost facial expression recognition system. Appl Intell 40(3):536–545CrossRef Owusu E, Zhan Y, Mao QR (2014) An SVM-AdaBoost facial expression recognition system. Appl Intell 40(3):536–545CrossRef
go back to reference Pahuja S, Veer K (2022) Recent approaches on classification and feature extraction of EEG signal: a review. Robotica 40(1):77–101CrossRef Pahuja S, Veer K (2022) Recent approaches on classification and feature extraction of EEG signal: a review. Robotica 40(1):77–101CrossRef
go back to reference Patle A, Chouhan DS (2013) SVM kernel functions for classification. In: 2013 International Conference on Advances in Technology and Engineering (ICATE) Patle A, Chouhan DS (2013) SVM kernel functions for classification. In: 2013 International Conference on Advances in Technology and Engineering (ICATE)
go back to reference Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238PubMedCrossRef Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238PubMedCrossRef
go back to reference Petrosian A (1995). Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In: Proceedings eighth IEEE symposium on computer-based medical systems Petrosian A (1995). Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In: Proceedings eighth IEEE symposium on computer-based medical systems
go back to reference Pisner DA, Schnyer DM (2020) Support vector machine. In Machine learning (pp 101–121). Elsevier Pisner DA, Schnyer DM (2020) Support vector machine. In Machine learning (pp 101–121). Elsevier
go back to reference Ramezani M, Feizi-Derakhshi M-R, Balafar M-A, Asgari-Chenaghlu M, Feizi-Derakhshi A-R, Nikzad-Khasmakhi N, Ranjbar-Khadivi M, Jahanbakhsh-Nagadeh Z, Zafarani-Moattar E, Akan T (2022) Automatic personality prediction: an enhanced method using ensemble modeling. Neural Comput Appl 34(21):18369–18389CrossRef Ramezani M, Feizi-Derakhshi M-R, Balafar M-A, Asgari-Chenaghlu M, Feizi-Derakhshi A-R, Nikzad-Khasmakhi N, Ranjbar-Khadivi M, Jahanbakhsh-Nagadeh Z, Zafarani-Moattar E, Akan T (2022) Automatic personality prediction: an enhanced method using ensemble modeling. Neural Comput Appl 34(21):18369–18389CrossRef
go back to reference Ronconi L, Vitale A, Federici A, Pini E, Molteni M, Casartelli L (2020) Altered neural oscillations and connectivity in the beta band underlie detail-oriented visual processing in autism. NeuroImage Clinical 28:102484PubMedPubMedCentralCrossRef Ronconi L, Vitale A, Federici A, Pini E, Molteni M, Casartelli L (2020) Altered neural oscillations and connectivity in the beta band underlie detail-oriented visual processing in autism. NeuroImage Clinical 28:102484PubMedPubMedCentralCrossRef
go back to reference Rudd M, Vohs KD, Aaker J (2012) Awe expands people’s perception of time, alters decision making, and enhances well-being. Psychol Sci 23(10):1130–1136PubMedCrossRef Rudd M, Vohs KD, Aaker J (2012) Awe expands people’s perception of time, alters decision making, and enhances well-being. Psychol Sci 23(10):1130–1136PubMedCrossRef
go back to reference Ryu V, Kook S, Lee SJ, Ha K, Cho H-S (2015) Effects of emotional stimuli on time perception in manic and euthymic patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 56:39–45PubMedCrossRef Ryu V, Kook S, Lee SJ, Ha K, Cho H-S (2015) Effects of emotional stimuli on time perception in manic and euthymic patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 56:39–45PubMedCrossRef
go back to reference Scherer S, Kane J, Gobl C, Schwenker F (2013) Investigating fuzzy-input fuzzy-output support vector machines for robust voice quality classification. Comput Speech Lang 27(1):263–287CrossRef Scherer S, Kane J, Gobl C, Schwenker F (2013) Investigating fuzzy-input fuzzy-output support vector machines for robust voice quality classification. Comput Speech Lang 27(1):263–287CrossRef
go back to reference Schirmer A (2004) Timing speech: a review of lesion and neuroimaging findings. Cogn Brain Res 21(2):269–287CrossRef Schirmer A (2004) Timing speech: a review of lesion and neuroimaging findings. Cogn Brain Res 21(2):269–287CrossRef
go back to reference Şen B, Peker M, Çavuşoğlu A, Çelebi FV (2014) A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J Med Syst 38(3):1–21CrossRef Şen B, Peker M, Çavuşoğlu A, Çelebi FV (2014) A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J Med Syst 38(3):1–21CrossRef
go back to reference Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal 27(3):379–423CrossRef Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal 27(3):379–423CrossRef
go back to reference Sharma A, Amarnath M, Kankar P (2016) Feature extraction and fault severity classification in ball bearings. J Vib Control 22(1):176–192CrossRef Sharma A, Amarnath M, Kankar P (2016) Feature extraction and fault severity classification in ball bearings. J Vib Control 22(1):176–192CrossRef
go back to reference Sohn M-H, Carlson RA (2003) Implicit temporal tuning of working memory strategy during cognitive skill acquisition. Am J Psychol 116(2):239–256PubMedCrossRef Sohn M-H, Carlson RA (2003) Implicit temporal tuning of working memory strategy during cognitive skill acquisition. Am J Psychol 116(2):239–256PubMedCrossRef
go back to reference Stafford RQ, MacDonald BA, Jayawardena C, Wegner DM, Broadbent E (2014) Does the robot have a mind? Mind perception and attitudes towards robots predict use of an eldercare robot. Int J Soc Robot 6(1):17–32CrossRef Stafford RQ, MacDonald BA, Jayawardena C, Wegner DM, Broadbent E (2014) Does the robot have a mind? Mind perception and attitudes towards robots predict use of an eldercare robot. Int J Soc Robot 6(1):17–32CrossRef
go back to reference Tagawa M, Takei Y, Kato Y, Suto T, Hironaga N, Ohki T, Takahashi Y, Fujihara K, Sakurai N, Ujita K (2022) Disrupted local beta band networks in schizophrenia revealed through graph analysis: A magnetoencephalography study. Psychiat Clin Neurosci 76(7):309–320CrossRef Tagawa M, Takei Y, Kato Y, Suto T, Hironaga N, Ohki T, Takahashi Y, Fujihara K, Sakurai N, Ujita K (2022) Disrupted local beta band networks in schizophrenia revealed through graph analysis: A magnetoencephalography study. Psychiat Clin Neurosci 76(7):309–320CrossRef
go back to reference Terhune DB, Croucher M, Marcusson-Clavertz D, Macdonald JS (2014) Time contracts when the mind wanders. Procedia Soc Behav Sci 126:125–126CrossRef Terhune DB, Croucher M, Marcusson-Clavertz D, Macdonald JS (2014) Time contracts when the mind wanders. Procedia Soc Behav Sci 126:125–126CrossRef
go back to reference Tipples J (2008) Negative emotionality influences the effects of emotion on time perception. Emotion 8(1):127PubMedCrossRef Tipples J (2008) Negative emotionality influences the effects of emotion on time perception. Emotion 8(1):127PubMedCrossRef
go back to reference Treisman M (1963) Temporal discrimination and the indifference interval: Implications for a model of the" internal clock". Psychol Monogr Gen Appl 77(13):1CrossRef Treisman M (1963) Temporal discrimination and the indifference interval: Implications for a model of the" internal clock". Psychol Monogr Gen Appl 77(13):1CrossRef
go back to reference Treisman M, Faulkner A, Naish PL, Brogan D (1990) The internal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception 19(6):705–742PubMedCrossRef Treisman M, Faulkner A, Naish PL, Brogan D (1990) The internal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception 19(6):705–742PubMedCrossRef
go back to reference Valizadeh A, Tass P (2023) Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. Plos Comput Biol 19(2):1010853CrossRef Valizadeh A, Tass P (2023) Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. Plos Comput Biol 19(2):1010853CrossRef
go back to reference Vapnik VN (1995). Constructing learning algorithms. In The nature of statistical learning theory (pp. 119–166). Springer Vapnik VN (1995). Constructing learning algorithms. In The nature of statistical learning theory (pp. 119–166). Springer
go back to reference Vohs KD, Schmeichel BJ (2003) Self-regulation and extended now: Controlling the self alters the subjective experience of time. J Pers Soc Psychol 85(2):217PubMedCrossRef Vohs KD, Schmeichel BJ (2003) Self-regulation and extended now: Controlling the self alters the subjective experience of time. J Pers Soc Psychol 85(2):217PubMedCrossRef
go back to reference Weitzenhoffer AM, Hilgard ER (1962) Stanford hypnotic susceptibility scale, form C, vol 27. Consulting Psychologists Press, Palo Alto, CA Weitzenhoffer AM, Hilgard ER (1962) Stanford hypnotic susceptibility scale, form C, vol 27. Consulting Psychologists Press, Palo Alto, CA
go back to reference Wickens CD (2012) Workload assessment and prediction. MANPRINT: an approach to systems integration, 257 Wickens CD (2012) Workload assessment and prediction. MANPRINT: an approach to systems integration, 257
go back to reference Wiener M, Parikh A, Krakow A, Coslett H (2018) An intrinsic role of beta oscillations in memory for time estimation. Sci Rep 8(1):1–17CrossRef Wiener M, Parikh A, Krakow A, Coslett H (2018) An intrinsic role of beta oscillations in memory for time estimation. Sci Rep 8(1):1–17CrossRef
go back to reference Wittmann M, van Wassenhove V (2009) The experience of time: neural mechanisms and the interplay of emotion, cognition and embodiment. R Soc London 364:1809–1813CrossRef Wittmann M, van Wassenhove V (2009) The experience of time: neural mechanisms and the interplay of emotion, cognition and embodiment. R Soc London 364:1809–1813CrossRef
go back to reference Zakay D, Block RA (1997) Temporal cognition. Curr Dir Psychol Sci 6(1):12–16CrossRef Zakay D, Block RA (1997) Temporal cognition. Curr Dir Psychol Sci 6(1):12–16CrossRef
go back to reference Zhou J, Wang G, Liu J, Wu D, Xu W, Wang Z, Ye J, Xia M, Hu Y, Tian Y (2020) Automatic sleep stage classification with single channel EEG signal based on two-layer stacked ensemble model. IEEE Access 8:57283–57297CrossRef Zhou J, Wang G, Liu J, Wu D, Xu W, Wang Z, Ye J, Xia M, Hu Y, Tian Y (2020) Automatic sleep stage classification with single channel EEG signal based on two-layer stacked ensemble model. IEEE Access 8:57283–57297CrossRef
Metadata
Title
Predicting an EEG-Based hypnotic time estimation with non-linear kernels of support vector machine algorithm
Authors
Hoda Taghilou
Mazaher Rezaei
Alireza Valizadeh
Touraj Hashemi Nosratabad
Mohammad Ali Nazari
Publication date
27-03-2024
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-024-10088-y