Skip to main content
Top

2024 | OriginalPaper | Chapter

Predicting Content Popularity on Social Media: An Analytical Approach Using Regression Modeling

Authors : Heba Al-Mamouri, Wadhah R. Baiee

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The significant emergence of the "popularity" phenomena has been fueled by the quick rise of influential social media platforms like Facebook and YouTube as well as the pervasive integration of electronic gadgets into daily life. This popularity essence essentially entails the rapid accrual of substantial views, frequently reaching into the thousands or millions, across videos, posts, and various content types, serving as a tangible reflection of user inclinations. The task of predicting content popularity is a formidable one due to its reliance on an array of factors, encompassing visual and social attributes such as views, likes, comments, as well as variables like publication time, publisher identity, duration, and content specifics. This manuscript presents a comprehensive exploration of this subject matter, delving into recent applications of machine learning techniques for the prediction of content popularity. It underscores the significance of judiciously selecting predictive attributes and appropriately configuring data models to attain accurate prognostications. The research work encompasses an array of regression models harnessed in machine learning, including decision trees, random forests, support vector machines, ridge regression, and both linear and non-linear regression. Diverse classes of attributes employed for popularity prediction are delineated, encompassing text-based features, visual characteristics, metadata with a social dimension, and the fusion of multiple attributes. The paper further outlines the prevalent assessment metrics employed for evaluating regression models, encompassing mean absolute error, mean squared error, and root mean squared error. Also, it includes a table that summarizes the references, models, content types, features, and results of various studies related to popularity prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
10.
go back to reference Ling, C., Blackburn, J., De Cristofaro, E., Stringhini, G.: Slapping cats, bopping heads, and oreo shakes: understanding indicators of Virality in TikTok Short Videos. In: ACM International Conference Proceeding Series, pp. 164–173. (2022) https://doi.org/10.1145/3501247.3531551. Ling, C., Blackburn, J., De Cristofaro, E., Stringhini, G.: Slapping cats, bopping heads, and oreo shakes: understanding indicators of Virality in TikTok Short Videos. In: ACM International Conference Proceeding Series, pp. 164–173. (2022) https://​doi.​org/​10.​1145/​3501247.​3531551.
11.
go back to reference Ng, L.H.X., Tan, J.Y.H., Tan, D.J.H., Lee, R.K.W.: Will you dance to the challenge?: Predicting user participation of TikTok challenges. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2021. pp. 356–360 (2021) https://doi.org/10.1145/3487351.3488276. Ng, L.H.X., Tan, J.Y.H., Tan, D.J.H., Lee, R.K.W.: Will you dance to the challenge?: Predicting user participation of TikTok challenges. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2021. pp. 356–360 (2021) https://​doi.​org/​10.​1145/​3487351.​3488276.
13.
go back to reference Hamouda, A.E.A.: Sentiment analyzer for arabic comments system, 4(3), pp. 99–103 (2013). Hamouda, A.E.A.: Sentiment analyzer for arabic comments system, 4(3), pp. 99–103 (2013).
20.
go back to reference Zohourian, A., Sajedi, H., Yavary, A.: A r c h i v e o f S I D Popularity Prediction of Images and Videos on Instagram. Available: www.SID.ir. Zohourian, A., Sajedi, H., Yavary, A.: A r c h i v e o f S I D Popularity Prediction of Images and Videos on Instagram. Available: www.​SID.​ir.
21.
go back to reference Purba, K.R., Asirvatham, D., Murugesan, R.K.: Analysis and prediction of instagram users popularity using regression techniques based on metadata, media and hashtags analysis. Eng. Lett. 28(3), 170–177 (2020). Purba, K.R., Asirvatham, D., Murugesan, R.K.: Analysis and prediction of instagram users popularity using regression techniques based on metadata, media and hashtags analysis. Eng. Lett. 28(3), 170–177 (2020).
24.
go back to reference Brownlee, J.: Master Machine Learning Algorithms. In: Suparyanto dan Rosad 2015, 5(3), pp. 1–23 (2016). Brownlee, J.: Master Machine Learning Algorithms. In: Suparyanto dan Rosad 2015, 5(3), pp. 1–23 (2016).
Metadata
Title
Predicting Content Popularity on Social Media: An Analytical Approach Using Regression Modeling
Authors
Heba Al-Mamouri
Wadhah R. Baiee
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_51