Skip to main content
Top

2020 | OriginalPaper | Chapter

Predicting Customer Churn for Insurance Data

Authors : Michael Scriney, Dongyun Nie, Mark Roantree

Published in: Big Data Analytics and Knowledge Discovery

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most organisations employ customer relationship management systems to provide a strategic advantage over their competitors. One aspect of this is applying a customer lifetime value to each client which effectively forms a fine-grained ranking of every customer in their database. This is used to focus marketing and sales budgets and, in turn, generate a more optimised and targeted spend. The problem is that it requires a full customer history for every client and this rarely exists. In effect, there is a large gap between the available information in application databases and the types of datasets required to calculate customer lifetime values. This gap prevents any meaningful calculation of customer lifetime values. In this research, we present an approach to generating some of the missing parameters for CLV calculations. This requires a specialised form of data warehouse architecture and a flexible prediction and validation methodology for imputing missing data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Günther, C.C., et al.: Modelling and predicting customer churn from an insurance company. Scand. Actuar. J. 2014(1), 58–71 (2014)MathSciNetCrossRef Günther, C.C., et al.: Modelling and predicting customer churn from an insurance company. Scand. Actuar. J. 2014(1), 58–71 (2014)MathSciNetCrossRef
2.
go back to reference Berger, P.D., Nasr, N.I.: Customer lifetime value: marketing models and applications. J. Interact. Market. 12(1), 17–30 (1998)CrossRef Berger, P.D., Nasr, N.I.: Customer lifetime value: marketing models and applications. J. Interact. Market. 12(1), 17–30 (1998)CrossRef
4.
go back to reference Di Benedetto, C.A., Kim, K.H.: Customer equity and value management of global brands: bridging theory and practice from financial and marketing perspectives. J. Bus. Res. 69(9), 3721–3724 (2016)CrossRef Di Benedetto, C.A., Kim, K.H.: Customer equity and value management of global brands: bridging theory and practice from financial and marketing perspectives. J. Bus. Res. 69(9), 3721–3724 (2016)CrossRef
5.
go back to reference Gupta, S.: Modeling customer lifetime value. J. Serv. Res. 9(2), 139–155 (2006)CrossRef Gupta, S.: Modeling customer lifetime value. J. Serv. Res. 9(2), 139–155 (2006)CrossRef
6.
go back to reference Hu, X., Yang, Y., Chen, L., Zhu, S.: Research on a customer churn combination prediction model based on decision tree and neural network. In: 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp. 129–132 (2020) Hu, X., Yang, Y., Chen, L., Zhu, S.: Research on a customer churn combination prediction model based on decision tree and neural network. In: 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp. 129–132 (2020)
7.
go back to reference Lemmens, A., Croux, C.: Bagging and boosting classification trees to predict churn. J. Market. Res. 43(2), 276–286 (2006)CrossRef Lemmens, A., Croux, C.: Bagging and boosting classification trees to predict churn. J. Market. Res. 43(2), 276–286 (2006)CrossRef
8.
go back to reference Ling, R., Yen, D.C.: Customer relationship management: an analysis framework and implementation strategies. J. Comput. Inf. Syst. 41(3), 82–97 (2001) Ling, R., Yen, D.C.: Customer relationship management: an analysis framework and implementation strategies. J. Comput. Inf. Syst. 41(3), 82–97 (2001)
9.
go back to reference Metsis, V., Androutsopoulos, I., Paliouras, G.: Spam filtering with naive Bayes-which naive Bayes? In: CEAS, Mountain View, CA, vol. 17, pp. 28–69 (2006) Metsis, V., Androutsopoulos, I., Paliouras, G.: Spam filtering with naive Bayes-which naive Bayes? In: CEAS, Mountain View, CA, vol. 17, pp. 28–69 (2006)
11.
go back to reference Reinartz, W.J., Kumar, V.: On the profitability of long-life customers in a noncontractual setting: an empirical investigation and implications for marketing. J. Market. 64(4), 17–35 (2000)CrossRef Reinartz, W.J., Kumar, V.: On the profitability of long-life customers in a noncontractual setting: an empirical investigation and implications for marketing. J. Market. 64(4), 17–35 (2000)CrossRef
12.
go back to reference Risselada, H., Verhoef, P.C., Bijmolt, T.H.: Staying power of churn prediction models. J. Interact. Market. 24(3), 198–208 (2010)CrossRef Risselada, H., Verhoef, P.C., Bijmolt, T.H.: Staying power of churn prediction models. J. Interact. Market. 24(3), 198–208 (2010)CrossRef
13.
go back to reference Roantree, M., Liu, J.: A heuristic approach to selecting views for materialization. Softw. Pract. Exp. 44(10), 1157–1179 (2014)CrossRef Roantree, M., Liu, J.: A heuristic approach to selecting views for materialization. Softw. Pract. Exp. 44(10), 1157–1179 (2014)CrossRef
14.
go back to reference Scriney, M., McCarthy, S., McCarren, A., Cappellari, P., Roantree, M.: Automating data mart construction from semi-structured data sources. Comput. J. 62(3), 394–413 (2019)CrossRef Scriney, M., McCarthy, S., McCarren, A., Cappellari, P., Roantree, M.: Automating data mart construction from semi-structured data sources. Comput. J. 62(3), 394–413 (2019)CrossRef
15.
go back to reference Sohrabi, B., Khanlari, A.: Customer lifetime value (CLV) measurement based on RFM model. Iran. Account. Auditing Rev. 14(47), 7–20 (2007) Sohrabi, B., Khanlari, A.: Customer lifetime value (CLV) measurement based on RFM model. Iran. Account. Auditing Rev. 14(47), 7–20 (2007)
16.
go back to reference Sundarkumar, G.G., Ravi, V., Siddeshwar, V.: One-class support vector machine based undersampling: application to churn prediction and insurance fraud detection. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7. IEEE (2015) Sundarkumar, G.G., Ravi, V., Siddeshwar, V.: One-class support vector machine based undersampling: application to churn prediction and insurance fraud detection. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7. IEEE (2015)
17.
go back to reference Tamaddoni, A., Stakhovych, S., Ewing, M.: The impact of personalised incentives on the profitability of customer retention campaigns. J. Market. Manage. 33(5), 1–21 (2017)CrossRef Tamaddoni, A., Stakhovych, S., Ewing, M.: The impact of personalised incentives on the profitability of customer retention campaigns. J. Market. Manage. 33(5), 1–21 (2017)CrossRef
18.
go back to reference Ullah, I., Raza, B., Malik, A.K., Imran, M., Islam, S.U., Kim, S.W.: A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access 7, 60134–60149 (2019)CrossRef Ullah, I., Raza, B., Malik, A.K., Imran, M., Islam, S.U., Kim, S.W.: A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access 7, 60134–60149 (2019)CrossRef
19.
go back to reference Zhang, R., Li, W., Tan, W., Mo, T.: Deep and shallow model for insurance churn prediction service. In: 2017 IEEE International Conference on Services Computing (SCC), pp. 346–353. IEEE (2017) Zhang, R., Li, W., Tan, W., Mo, T.: Deep and shallow model for insurance churn prediction service. In: 2017 IEEE International Conference on Services Computing (SCC), pp. 346–353. IEEE (2017)
Metadata
Title
Predicting Customer Churn for Insurance Data
Authors
Michael Scriney
Dongyun Nie
Mark Roantree
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_21

Premium Partner