Skip to main content
Top

2015 | OriginalPaper | Chapter

42. Predicting Damage Evolution in Composites with Explicit Representation of Discrete Damage Modes

Authors : Q. D. Yang, B. C. Do

Published in: Handbook of Damage Mechanics

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymer matrix composites (PMCs) are playing rapidly increasing roles in future military and civilian industries. Damage tolerance analysis is an integral part of PMC structural design. Considerable research efforts have been invested to establish predictive capabilities, but thus far high-fidelity strength and durability prediction capabilities are yet to be established. Advanced numerical methods that can explicitly resolve the multiple-damage processes and their nonlinear coupling at various scales are highly desired. This paper first reviews the recent development of advanced numerical methods, including eXtended Finite Element Method (X-FEM), phantom node methods (PNM), and the Augmented Finite Element Method (A-FEM), in handling the multiple-damage coupling in composites. The capability of these methods in representing various composite damage modes explicitly with embedded nonlinear fracture models (such as cohesive zone models) makes them excellent candidates for high-fidelity failure analyses of composites. The detailed formulation of A-FEM and its implementation to a popular commercial software package (ABAQUS) as a user-defined element has been given. Successful simulations of composites at various scales using the framework of A-FEM are presented and the numerical and material issues associated with these high-fidelity analyses are discussed. Through the numerical predictions and the direct comparisons to experimental results, it has been demonstrated that high-fidelity failure analyses can be achieved with the A-FEM through careful calibration of nonlinear material properties and cohesive fracture parameters and with proper considerations of the different length scales within which these damage processes operate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference D.F. Adams, T.R. King, D.M. Blackketter, Evaluation of the transverse flexure test method for composite materials. Compos. Sci. Technol. 39, 341–353 (1990)CrossRef D.F. Adams, T.R. King, D.M. Blackketter, Evaluation of the transverse flexure test method for composite materials. Compos. Sci. Technol. 39, 341–353 (1990)CrossRef
go back to reference G. Bao et al., The role of material orthotropy in fracture specimens for composites. Int. J. Sol. Struct. 29, 1105–1116 (1992)CrossRefMATH G. Bao et al., The role of material orthotropy in fracture specimens for composites. Int. J. Sol. Struct. 29, 1105–1116 (1992)CrossRefMATH
go back to reference G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially symmetric cracks. Appl. Math. Mech. 23, 622–636 (1959)MathSciNetCrossRefMATH G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially symmetric cracks. Appl. Math. Mech. 23, 622–636 (1959)MathSciNetCrossRefMATH
go back to reference G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in Advances in Applied Mechanics, ed. by H.L. Dryden, T. Von Karman (Academic, New York, 1962), pp. 55–129 G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in Advances in Applied Mechanics, ed. by H.L. Dryden, T. Von Karman (Academic, New York, 1962), pp. 55–129
go back to reference Z.P. Bazant, J. Planas, Fracture and Size Effect in Concrete and Other Quasibrittle Materials (CRC Press, Boca Raton, 1998) Z.P. Bazant, J. Planas, Fracture and Size Effect in Concrete and Other Quasibrittle Materials (CRC Press, Boca Raton, 1998)
go back to reference P.P. Camanho, C.G. Davila, M.F. De Moura, Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37, 1415–1438 (2003)CrossRef P.P. Camanho, C.G. Davila, M.F. De Moura, Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37, 1415–1438 (2003)CrossRef
go back to reference P.P. Camanho et al., Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos. Part A Appl. Sci. Manuf. 37, 165–176 (2006)CrossRef P.P. Camanho et al., Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos. Part A Appl. Sci. Manuf. 37, 165–176 (2006)CrossRef
go back to reference A. Carpinteri, G. Colombo, Numerical analysis of catastrophic softening behaviour(snap-back instability). Comput. Struct. 31, 607–636 (1989)CrossRef A. Carpinteri, G. Colombo, Numerical analysis of catastrophic softening behaviour(snap-back instability). Comput. Struct. 31, 607–636 (1989)CrossRef
go back to reference A. Carpinteri, G. Ferro, Fracture assessment in concrete structures, in Concrete Structure Integrity, ed. by I. Milne, R.O. Ritchie, B. Karihaloo (Elsevier Science, Amsterdam, 2003) A. Carpinteri, G. Ferro, Fracture assessment in concrete structures, in Concrete Structure Integrity, ed. by I. Milne, R.O. Ritchie, B. Karihaloo (Elsevier Science, Amsterdam, 2003)
go back to reference S.W. Case, K.L. Reifsnider, MRLife 12 Theory Manual – Composite Materials (Materials Response Group, Virginia Polytechnical Institute and State University, Blacksburg, 1999) S.W. Case, K.L. Reifsnider, MRLife 12 Theory Manual – Composite Materials (Materials Response Group, Virginia Polytechnical Institute and State University, Blacksburg, 1999)
go back to reference J.L. Chaboche, P.M. Lesne, J.F. Maire, Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites. Int. J. Damage Mech. 4(1), 5–22 (1995)CrossRef J.L. Chaboche, P.M. Lesne, J.F. Maire, Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites. Int. J. Damage Mech. 4(1), 5–22 (1995)CrossRef
go back to reference J.L. Chaboche, R. Girard, P. Levasseur, On the interface debonding models. Int. J. Damage Mech. 6, 220–256 (1997)CrossRef J.L. Chaboche, R. Girard, P. Levasseur, On the interface debonding models. Int. J. Damage Mech. 6, 220–256 (1997)CrossRef
go back to reference K.Y. Chang, S. Liu, F.K. Chang, Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings. J. Compos. Mater. 25, 274–301 (1991) K.Y. Chang, S. Liu, F.K. Chang, Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings. J. Compos. Mater. 25, 274–301 (1991)
go back to reference H.Y. Choi, F.K. Chang, A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. J. Compos. Mater. 26, 2134–2169 (1992)CrossRef H.Y. Choi, F.K. Chang, A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. J. Compos. Mater. 26, 2134–2169 (1992)CrossRef
go back to reference G. Clark, Modeling of impact damage in composite laminates. Composites 20, 209–214 (1989)CrossRef G. Clark, Modeling of impact damage in composite laminates. Composites 20, 209–214 (1989)CrossRef
go back to reference A. Corigliano, Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int. J. Sol. Struct. 30, 2779–2811 (1993)CrossRefMATH A. Corigliano, Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int. J. Sol. Struct. 30, 2779–2811 (1993)CrossRefMATH
go back to reference B.N. Cox, Q.D. Yang, In quest of virtual tests for structural composites. Science 314, 1102–1107 (2006)CrossRef B.N. Cox, Q.D. Yang, In quest of virtual tests for structural composites. Science 314, 1102–1107 (2006)CrossRef
go back to reference W.C. Cui, M.R. Wisnom, N. Jones, Failure mechanisms in three and four point short beam bending tests of unidirectional glass/epoxy. J. Strain. Anal. 27(4), 235–243 (1992)CrossRef W.C. Cui, M.R. Wisnom, N. Jones, Failure mechanisms in three and four point short beam bending tests of unidirectional glass/epoxy. J. Strain. Anal. 27(4), 235–243 (1992)CrossRef
go back to reference C.G. Davila, P.P. Camanho, C.A. Rose, Failure criteria for FPR laminates. J. Compos. Mater. 39, 323–345 (2005)CrossRef C.G. Davila, P.P. Camanho, C.A. Rose, Failure criteria for FPR laminates. J. Compos. Mater. 39, 323–345 (2005)CrossRef
go back to reference R. de Borst, Numerical aspects of cohesive-zone models. Eng. Fract. Mech. 70, 1743–1757 (2003)CrossRef R. de Borst, Numerical aspects of cohesive-zone models. Eng. Fract. Mech. 70, 1743–1757 (2003)CrossRef
go back to reference R. de Borst et al., On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials. Comput. Mech. 17(1–2), 130–141 (1995)CrossRefMATH R. de Borst et al., On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials. Comput. Mech. 17(1–2), 130–141 (1995)CrossRefMATH
go back to reference R. de Borst, J.J.C. Remmers, A. Needleman, Mesh-independent discrete numerical representations of cohesive-zone models. Eng. Fract. Mech. 73(2), 160–177 (2006)CrossRef R. de Borst, J.J.C. Remmers, A. Needleman, Mesh-independent discrete numerical representations of cohesive-zone models. Eng. Fract. Mech. 73(2), 160–177 (2006)CrossRef
go back to reference J. Dowlbow, M. A. Kahaleel, J. Mitchell, Multiscale Mathematics Initiative: A Roadmap. A Report to Department of Energy Report PNNL-14966 (2004) J. Dowlbow, M. A. Kahaleel, J. Mitchell, Multiscale Mathematics Initiative: A Roadmap. A Report to Department of Energy Report PNNL-14966 (2004)
go back to reference D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Sol. 8, 100–104 (1960)CrossRef D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Sol. 8, 100–104 (1960)CrossRef
go back to reference G.J. Dvorak, N. Laws, Analysis of progressive matrix cracking in composite laminates. II. First ply failure. J. Compos. Mater. 21, 309–329 (1987)CrossRef G.J. Dvorak, N. Laws, Analysis of progressive matrix cracking in composite laminates. II. First ply failure. J. Compos. Mater. 21, 309–329 (1987)CrossRef
go back to reference M. Elices et al., The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69, 137–163 (2002)CrossRef M. Elices et al., The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69, 137–163 (2002)CrossRef
go back to reference X.J. Fang, Q.D. Yang, B.N. Cox, An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. Int. J. Numer. Meth. Eng. 88, 841–861 (2010)MathSciNetCrossRef X.J. Fang, Q.D. Yang, B.N. Cox, An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. Int. J. Numer. Meth. Eng. 88, 841–861 (2010)MathSciNetCrossRef
go back to reference X.J. Fang et al., High-fidelity simulations of multiple fracture processes in a laminated composites in tension. J. Mech. Phys. Sol. 59, 1355–1373 (2011a)CrossRefMATH X.J. Fang et al., High-fidelity simulations of multiple fracture processes in a laminated composites in tension. J. Mech. Phys. Sol. 59, 1355–1373 (2011a)CrossRefMATH
go back to reference X.J. Fang et al., An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. Int. J. Numer. Meth. Eng. 88, 841–861 (2011b)CrossRefMATH X.J. Fang et al., An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. Int. J. Numer. Meth. Eng. 88, 841–861 (2011b)CrossRefMATH
go back to reference A. Fawcett, J. Trostle, S. Ward, in International Conference on Composite Materials, Gold Coast, 1997 A. Fawcett, J. Trostle, S. Ward, in International Conference on Composite Materials, Gold Coast, 1997
go back to reference S.F. Finn, Y.F. He, G.S. Springer, Delaminations in composite plates under transverse impact loads – experimental results. Compos. Struct. 23, 191–204 (1993)CrossRef S.F. Finn, Y.F. He, G.S. Springer, Delaminations in composite plates under transverse impact loads – experimental results. Compos. Struct. 23, 191–204 (1993)CrossRef
go back to reference J. Fish, A. Ghouali, Multiscale analysis sensitivity analysis for composite materials. Int. J. Numer. Meth. Eng. 50, 1501–1520 (2001)CrossRefMATH J. Fish, A. Ghouali, Multiscale analysis sensitivity analysis for composite materials. Int. J. Numer. Meth. Eng. 50, 1501–1520 (2001)CrossRefMATH
go back to reference C. Gonzalez, J. LLorca, Multiscale modeling of fracture in fiber-reinforced composites. Acta Mater. 54, 4171–4181 (2006)CrossRef C. Gonzalez, J. LLorca, Multiscale modeling of fracture in fiber-reinforced composites. Acta Mater. 54, 4171–4181 (2006)CrossRef
go back to reference S. Goutianos, B.F. Sorensen, Path dependence of truss-like mixed mode cohesive laws. Eng. Fract. Mech. 91, 117–132 (2012)CrossRef S. Goutianos, B.F. Sorensen, Path dependence of truss-like mixed mode cohesive laws. Eng. Fract. Mech. 91, 117–132 (2012)CrossRef
go back to reference S. Hallett, M.R. Wisnom, Numerical investigation of progressive damage and the effect of layup in notched tensile tests. J. Compos. Mater. 40, 1229–1245 (2006a)CrossRef S. Hallett, M.R. Wisnom, Numerical investigation of progressive damage and the effect of layup in notched tensile tests. J. Compos. Mater. 40, 1229–1245 (2006a)CrossRef
go back to reference S.R. Hallett, M.R. Wisnom, Experimental investigation of progressive damage and the effect of layup in notched tensile tests. J. Compos. Mater. 40, 119–141 (2006b)CrossRef S.R. Hallett, M.R. Wisnom, Experimental investigation of progressive damage and the effect of layup in notched tensile tests. J. Compos. Mater. 40, 119–141 (2006b)CrossRef
go back to reference A. Hansbo, P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Meth. Appl. Mech. Eng. 193, 3523–3540 (2004)MathSciNetCrossRefMATH A. Hansbo, P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Meth. Appl. Mech. Eng. 193, 3523–3540 (2004)MathSciNetCrossRefMATH
go back to reference M.-Y. He, J.W. Hutchinson, Crack deflection at an interface between dissimilar materials. Int. J. Sol. Struct. 25, 1053–1067 (1989)CrossRef M.-Y. He, J.W. Hutchinson, Crack deflection at an interface between dissimilar materials. Int. J. Sol. Struct. 25, 1053–1067 (1989)CrossRef
go back to reference A. Hillerborg, M. Modéer, P.E. Peterson, Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements. Cement. Concr. Res. 6, 773–782 (1976)CrossRef A. Hillerborg, M. Modéer, P.E. Peterson, Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements. Cement. Concr. Res. 6, 773–782 (1976)CrossRef
go back to reference E.V. Iarve, D. Mollenhauer, R. Kim, Theoretical and experimental investigation of stress redistribution in open-hole composite laminates due to damage accumulation. Compos. Part A 36, 163–171 (2005)CrossRef E.V. Iarve, D. Mollenhauer, R. Kim, Theoretical and experimental investigation of stress redistribution in open-hole composite laminates due to damage accumulation. Compos. Part A 36, 163–171 (2005)CrossRef
go back to reference H.M. Inglis et al., Cohesive modeling of dewetting in particulate composites: micromechanics vs. multiscale finite element analysis. Mech. Mater. 39, 580–595 (2007)CrossRef H.M. Inglis et al., Cohesive modeling of dewetting in particulate composites: micromechanics vs. multiscale finite element analysis. Mech. Mater. 39, 580–595 (2007)CrossRef
go back to reference P.M. Jelf, N.A. Fleck, The failure of composite tubes due to combined compression and torsion. J. Mater. Sci. Lett. 29, 3080 (1994)CrossRef P.M. Jelf, N.A. Fleck, The failure of composite tubes due to combined compression and torsion. J. Mater. Sci. Lett. 29, 3080 (1994)CrossRef
go back to reference A.S. Kaddorur, M.J. Hinton, P.D. Soden, A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Compos. Sci. Technol. 64, 449–476 (2004)CrossRef A.S. Kaddorur, M.J. Hinton, P.D. Soden, A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Compos. Sci. Technol. 64, 449–476 (2004)CrossRef
go back to reference M.S. Kafkalidis et al., Deformation and fracture of an adhesive layer constrained by plastically-deforming adherends. Int. J. Adhes. Sci. Technol. 14, 1593–1646 (2000)CrossRef M.S. Kafkalidis et al., Deformation and fracture of an adhesive layer constrained by plastically-deforming adherends. Int. J. Adhes. Sci. Technol. 14, 1593–1646 (2000)CrossRef
go back to reference M. Kumosa, G. Odegard, Comparison of the +/−45 tensile and Iosipescu shear tests for woven fabric composites. J. Compos. Technol. Res. 24, 3–15 (2002)CrossRef M. Kumosa, G. Odegard, Comparison of the +/−45 tensile and Iosipescu shear tests for woven fabric composites. J. Compos. Technol. Res. 24, 3–15 (2002)CrossRef
go back to reference I. Lapczyk, J. Hurtado, Progressive damage modeling in fiber-reinforced materials. Compos. Part A 38, 2333–2341 (2007)CrossRef I. Lapczyk, J. Hurtado, Progressive damage modeling in fiber-reinforced materials. Compos. Part A 38, 2333–2341 (2007)CrossRef
go back to reference F. Laurin, N. Carrere et al., A multi-scale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models. Compos. Part A 38, 198–209 (2007)CrossRef F. Laurin, N. Carrere et al., A multi-scale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models. Compos. Part A 38, 198–209 (2007)CrossRef
go back to reference D.S. Ling, Q.D. Yang, B.N. Cox, An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int. J. Fract. 156, 53–73 (2009)CrossRefMATH D.S. Ling, Q.D. Yang, B.N. Cox, An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int. J. Fract. 156, 53–73 (2009)CrossRefMATH
go back to reference D.S. Ling et al., Nonlinear fracture analysis of delamination crack jumps in laminated composites. J. Aerosp. Eng. 24, 181–188 (2011)CrossRef D.S. Ling et al., Nonlinear fracture analysis of delamination crack jumps in laminated composites. J. Aerosp. Eng. 24, 181–188 (2011)CrossRef
go back to reference J. LLorca, C. González, Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23, 5130–5147 (2011)CrossRef J. LLorca, C. González, Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23, 5130–5147 (2011)CrossRef
go back to reference P. Maimi et al., A continuum damage model for composite laminates: Part I – Constitutive model. Mech. Mater. 39, 897–908 (2007)CrossRef P. Maimi et al., A continuum damage model for composite laminates: Part I – Constitutive model. Mech. Mater. 39, 897–908 (2007)CrossRef
go back to reference A. Matzenmiller, J. Lubliner, R.L. Taylor, A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995)CrossRef A. Matzenmiller, J. Lubliner, R.L. Taylor, A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995)CrossRef
go back to reference L.N. McCartney, Physically based damage models for laminated composites. J. Mater. Des. Appl. 217(3), 163–199 (2003) L.N. McCartney, Physically based damage models for laminated composites. J. Mater. Des. Appl. 217(3), 163–199 (2003)
go back to reference J. Mergheim, E. Kuhl, P. Steinmann, A finite element method for the computational modeling of cohesive cracks. Int. J. Numer. Meth. Eng. 63, 276–289 (2005)CrossRefMATH J. Mergheim, E. Kuhl, P. Steinmann, A finite element method for the computational modeling of cohesive cracks. Int. J. Numer. Meth. Eng. 63, 276–289 (2005)CrossRefMATH
go back to reference N. Moës, T. Belytschko, Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)CrossRef N. Moës, T. Belytschko, Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)CrossRef
go back to reference N. Moes, J. Dolbow, T. Belytschko, Finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46, 131–150 (1999)CrossRefMATH N. Moes, J. Dolbow, T. Belytschko, Finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46, 131–150 (1999)CrossRefMATH
go back to reference A. Needleman, An analysis of decohesion along an imperfect interface. Int. J. Fract. 42, 21–40 (1990)CrossRef A. Needleman, An analysis of decohesion along an imperfect interface. Int. J. Fract. 42, 21–40 (1990)CrossRef
go back to reference T.K. O’Brien, S.A. Salpekar, Scale effects on the transverse tensile strength of carbon/epoxy composites. Compos. Mater. Test. Des. 11(ASTM STP 1206), 23–52 (1993) T.K. O’Brien, S.A. Salpekar, Scale effects on the transverse tensile strength of carbon/epoxy composites. Compos. Mater. Test. Des. 11(ASTM STP 1206), 23–52 (1993)
go back to reference T.K. O'Brien et al., Influence of specimen configuration and size on composite transverse tensile strength and scatter measured through flexure testing. J. Compos. Technol. Res. 25, 50–68 (2003) T.K. O'Brien et al., Influence of specimen configuration and size on composite transverse tensile strength and scatter measured through flexure testing. J. Compos. Technol. Res. 25, 50–68 (2003)
go back to reference J.T. Oden, K. Vemaganti, N. Moes, Hierarchical modeling of heterogeneous solids. Comput. Method. Appl. Mech. Eng. 172, 3–25 (1999)MathSciNetCrossRefMATH J.T. Oden, K. Vemaganti, N. Moes, Hierarchical modeling of heterogeneous solids. Comput. Method. Appl. Mech. Eng. 172, 3–25 (1999)MathSciNetCrossRefMATH
go back to reference J.T. Oden et al., Simulation-Based Engineering Science – Revolutionizing Engineering Science through Simulation (NSF, 2006) J.T. Oden et al., Simulation-Based Engineering Science – Revolutionizing Engineering Science through Simulation (NSF, 2006)
go back to reference C. Oskay, J. Fish, Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput. Methods Appl. Mech. Eng. 196, 1216–1243 (2007)MathSciNetCrossRefMATH C. Oskay, J. Fish, Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput. Methods Appl. Mech. Eng. 196, 1216–1243 (2007)MathSciNetCrossRefMATH
go back to reference J. Parmigiani, M.D. Thouless, The roles of toughness and cohesive strength on crack deflection at interfaces. J. Mech. Phys. Sol. 54, 266–287 (2006)CrossRefMATH J. Parmigiani, M.D. Thouless, The roles of toughness and cohesive strength on crack deflection at interfaces. J. Mech. Phys. Sol. 54, 266–287 (2006)CrossRefMATH
go back to reference J. Parmigiani, M.D. Thouless, The effects of cohesive strength and toughness on mixed-mode delamination of beam-like geometries. Eng. Fract. Mech. 74, 2675–2699 (2007)CrossRef J. Parmigiani, M.D. Thouless, The effects of cohesive strength and toughness on mixed-mode delamination of beam-like geometries. Eng. Fract. Mech. 74, 2675–2699 (2007)CrossRef
go back to reference S.T. Pinho, P. Robinson, L. Iannucci, Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66, 2069–2079 (2006)CrossRef S.T. Pinho, P. Robinson, L. Iannucci, Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66, 2069–2079 (2006)CrossRef
go back to reference S. Ramanathan, D. Ertaz, D.S. Fisher, Quasistatic crack propagation in heterogeneous media. Phys. Rev. Lett. 79, 873–876 (1997)CrossRef S. Ramanathan, D. Ertaz, D.S. Fisher, Quasistatic crack propagation in heterogeneous media. Phys. Rev. Lett. 79, 873–876 (1997)CrossRef
go back to reference J.N. Reddy, Multiscale computational model for predicting damage evolution in viscoelastic composites subjected to impact loading technical report to U.S. Army Research Office, 1-31 (2005) J.N. Reddy, Multiscale computational model for predicting damage evolution in viscoelastic composites subjected to impact loading technical report to U.S. Army Research Office, 1-31 (2005)
go back to reference J.J.C. Remmers, R. de Borst, A. Needleman, A cohesive segments method for the simulation of crack growth. Comput. Mech. 31(1–2), 69–77 (2003)CrossRefMATH J.J.C. Remmers, R. de Borst, A. Needleman, A cohesive segments method for the simulation of crack growth. Comput. Mech. 31(1–2), 69–77 (2003)CrossRefMATH
go back to reference S. Rudraraju et al., In-plane fracture of laminated fiber reinforced composites with varying fracture resistance: experimental observations and numerical crack propagation simulations. Int. J. Sol. Struct. 47, 901–911 (2010)CrossRefMATH S. Rudraraju et al., In-plane fracture of laminated fiber reinforced composites with varying fracture resistance: experimental observations and numerical crack propagation simulations. Int. J. Sol. Struct. 47, 901–911 (2010)CrossRefMATH
go back to reference S. Rudraraju et al., Experimental observations and numerical simulations of curved crack propagation in laminated fiber composites. Compos. Sci. Technol. 72, 1064–1074 (2011)CrossRef S. Rudraraju et al., Experimental observations and numerical simulations of curved crack propagation in laminated fiber composites. Compos. Sci. Technol. 72, 1064–1074 (2011)CrossRef
go back to reference K.W. Shahwan, A.M. Waas, Non-self-similar decohesion along a finite interface of unilaterally constrained delaminations. Proc. Roy. Soc. Lon. A 453, 515–550 (1997)MathSciNetCrossRef K.W. Shahwan, A.M. Waas, Non-self-similar decohesion along a finite interface of unilaterally constrained delaminations. Proc. Roy. Soc. Lon. A 453, 515–550 (1997)MathSciNetCrossRef
go back to reference M.M. Shokrieh, L.B. Lessard, Progressive fatigue damage modeling of composite materials, Part I: Modeling. J. Compos. Mater. 34(13), 1056–1080 (2000)CrossRef M.M. Shokrieh, L.B. Lessard, Progressive fatigue damage modeling of composite materials, Part I: Modeling. J. Compos. Mater. 34(13), 1056–1080 (2000)CrossRef
go back to reference S.J. Song, A.M. Waas, Energy-based mechanical model for mixed mode failure of laminated composites. AIAA J. 33, 739–745 (1995)CrossRef S.J. Song, A.M. Waas, Energy-based mechanical model for mixed mode failure of laminated composites. AIAA J. 33, 739–745 (1995)CrossRef
go back to reference J.H. Song, P.M.A. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Meth. Eng. 67, 868–893 (2006)CrossRefMATH J.H. Song, P.M.A. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Meth. Eng. 67, 868–893 (2006)CrossRefMATH
go back to reference R. Talreja, Multiscale modeling in damage mechanics of composite materials. J. Mater. Sci. 41, 6800–6812 (2006)CrossRef R. Talreja, Multiscale modeling in damage mechanics of composite materials. J. Mater. Sci. 41, 6800–6812 (2006)CrossRef
go back to reference X.D. Tang et al., Progressive failure analysis of 2x2 braided composites exhibiting multiscale heterogeneity. Compos. Sci. Technol. 66, 2580–2590 (2006)CrossRef X.D. Tang et al., Progressive failure analysis of 2x2 braided composites exhibiting multiscale heterogeneity. Compos. Sci. Technol. 66, 2580–2590 (2006)CrossRef
go back to reference T.-E. Tay, Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl. Mech. Rev. 56(1), 1–32 (2003)CrossRef T.-E. Tay, Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl. Mech. Rev. 56(1), 1–32 (2003)CrossRef
go back to reference M.D. Thouless, Crack spacing in brittle films on elastic substrates. J. Am. Ceram. Soc. 73, 2144–2146 (1990)CrossRef M.D. Thouless, Crack spacing in brittle films on elastic substrates. J. Am. Ceram. Soc. 73, 2144–2146 (1990)CrossRef
go back to reference M.D. Thouless, Q.D. Yang, A parametric study of the peel test. Int. J. Adhes. Adhes. 28, 176–184 (2008)CrossRef M.D. Thouless, Q.D. Yang, A parametric study of the peel test. Int. J. Adhes. Adhes. 28, 176–184 (2008)CrossRef
go back to reference A. Turon et al., A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38, 1072–1089 (2006)CrossRef A. Turon et al., A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38, 1072–1089 (2006)CrossRef
go back to reference A. Turon et al., An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)CrossRef A. Turon et al., An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)CrossRef
go back to reference F.P. Van de Meer, L.J. Sluys, Continuum models for the analysis of progressive failure in composite laminates. J. Compos. Mater. 43, 2131–2156 (2009a)CrossRef F.P. Van de Meer, L.J. Sluys, Continuum models for the analysis of progressive failure in composite laminates. J. Compos. Mater. 43, 2131–2156 (2009a)CrossRef
go back to reference F.P. Van de Meer, L.J. Sluys, A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int. J. Fract. 158, 107–124 (2009b)CrossRefMATH F.P. Van de Meer, L.J. Sluys, A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int. J. Fract. 158, 107–124 (2009b)CrossRefMATH
go back to reference F.P. Van de Meer, C. Oliver, L.J. Sluys, Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure. Compos. Sci. Technol. 70, 692–700 (2010)CrossRef F.P. Van de Meer, C. Oliver, L.J. Sluys, Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure. Compos. Sci. Technol. 70, 692–700 (2010)CrossRef
go back to reference A.S.D. Wang, F.W. Crossman, Initiation and growth of transverse cracks and delaminations. J. Compos. Mater. 14, 71–87 (1980)CrossRef A.S.D. Wang, F.W. Crossman, Initiation and growth of transverse cracks and delaminations. J. Compos. Mater. 14, 71–87 (1980)CrossRef
go back to reference J.S. Wang, Z. Suo, Experimental determination of interfacial toughness using Brazil-nut-sandwich. Acta Metall. 38, 1279–1290 (1990)CrossRef J.S. Wang, Z. Suo, Experimental determination of interfacial toughness using Brazil-nut-sandwich. Acta Metall. 38, 1279–1290 (1990)CrossRef
go back to reference M.R. Wisnom, The effect of fibre rotation in +/−45 degree tension tests on measured shear properties. Composites 26, 25–32 (1994)CrossRef M.R. Wisnom, The effect of fibre rotation in +/−45 degree tension tests on measured shear properties. Composites 26, 25–32 (1994)CrossRef
go back to reference M.R. Wisnom, F.-K. Chang, Modelling of splitting and delamination in notched cross-ply laminates. Compos. Sci. Technol. 60, 2849–2856 (2000)CrossRef M.R. Wisnom, F.-K. Chang, Modelling of splitting and delamination in notched cross-ply laminates. Compos. Sci. Technol. 60, 2849–2856 (2000)CrossRef
go back to reference M.R. Wisnom, M.I. Jones, Size effects in interlaminar tensile and shear strength of unidirectional glass fibre/epoxy. J. Reinf. Plast. Compos. 15, 2–15 (1996) M.R. Wisnom, M.I. Jones, Size effects in interlaminar tensile and shear strength of unidirectional glass fibre/epoxy. J. Reinf. Plast. Compos. 15, 2–15 (1996)
go back to reference D. Xie et al., Discrete cohesive zone model to simulate static fracture in 2D tri-axially braided carbon fiber composites. J. Compos. Mater. 40, 2025–2046 (2006)CrossRef D. Xie et al., Discrete cohesive zone model to simulate static fracture in 2D tri-axially braided carbon fiber composites. J. Compos. Mater. 40, 2025–2046 (2006)CrossRef
go back to reference Q.D. Yang, B.N. Cox, Cohesive zone models for damage evolution in laminated composites. Int. J. Fract. 133(2), 107–137 (2005)CrossRefMATH Q.D. Yang, B.N. Cox, Cohesive zone models for damage evolution in laminated composites. Int. J. Fract. 133(2), 107–137 (2005)CrossRefMATH
go back to reference Q.D. Yang, M.D. Thouless, Mixed mode fracture of plastically-deforming adhesive joints. Int. J. Fract. 110, 175–187 (2001a)CrossRef Q.D. Yang, M.D. Thouless, Mixed mode fracture of plastically-deforming adhesive joints. Int. J. Fract. 110, 175–187 (2001a)CrossRef
go back to reference Q. Yang, M.D. Thouless, Mixed mode fracture of plastically-deforming adhesive joints. Int. Fract. 110, 175–187 (2001b)CrossRef Q. Yang, M.D. Thouless, Mixed mode fracture of plastically-deforming adhesive joints. Int. Fract. 110, 175–187 (2001b)CrossRef
go back to reference Q.D. Yang, M.D. Thouless, S.M. Ward, Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Sol. 47, 1337–1353 (1999)CrossRefMATH Q.D. Yang, M.D. Thouless, S.M. Ward, Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Sol. 47, 1337–1353 (1999)CrossRefMATH
go back to reference Q.D. Yang, M.D. Thouless, S.M. Ward, Elastic–plastic mode-II fracture of adhesive joints. Int. J. Sol. Struct. 38, 3251–3262 (2001)CrossRefMATH Q.D. Yang, M.D. Thouless, S.M. Ward, Elastic–plastic mode-II fracture of adhesive joints. Int. J. Sol. Struct. 38, 3251–3262 (2001)CrossRefMATH
go back to reference Q.D. Yang et al., Fracture and length scales in human cortical bone: the necessity of nonlinear fracture models. Biomaterials 27, 2095–2113 (2006a)CrossRef Q.D. Yang et al., Fracture and length scales in human cortical bone: the necessity of nonlinear fracture models. Biomaterials 27, 2095–2113 (2006a)CrossRef
go back to reference Q.D. Yang et al., Re-evaluating the toughness of human cortical bone. Bone 38, 878–887 (2006b)CrossRef Q.D. Yang et al., Re-evaluating the toughness of human cortical bone. Bone 38, 878–887 (2006b)CrossRef
go back to reference Q.D. Yang et al., An improved cohesive element for shell delamination analyses. Int. J. Numer. Meth. Eng. 83(5), 611–641 (2010)MATH Q.D. Yang et al., An improved cohesive element for shell delamination analyses. Int. J. Numer. Meth. Eng. 83(5), 611–641 (2010)MATH
go back to reference Q.D. Yang et al., Virtual testing for advanced aerospace composites: advances and future needs. J. Eng. Mater. Technol. 133, 11002–11008 (2011)CrossRef Q.D. Yang et al., Virtual testing for advanced aerospace composites: advances and future needs. J. Eng. Mater. Technol. 133, 11002–11008 (2011)CrossRef
go back to reference Q.D. Yang, X. J. Fang, Revisiting crack kinking in cohesive materials. Unpublished results, 2013 Q.D. Yang, X. J. Fang, Revisiting crack kinking in cohesive materials. Unpublished results, 2013
go back to reference T. Ye, Z. Suo, A.G. Evans, Thin film cracking and the roles of substrate and interface. Int. J. Sol. Struct. 29, 2639–2648 (1992)CrossRef T. Ye, Z. Suo, A.G. Evans, Thin film cracking and the roles of substrate and interface. Int. J. Sol. Struct. 29, 2639–2648 (1992)CrossRef
go back to reference Z. Zhang, Z. Suo, Split singularities and the competition between crack penetration and debond at a bimaterial interface. Int. J. Struct. 44, 4559–4573 (2007)CrossRefMATH Z. Zhang, Z. Suo, Split singularities and the competition between crack penetration and debond at a bimaterial interface. Int. J. Struct. 44, 4559–4573 (2007)CrossRefMATH
go back to reference Z.Q. Zhou et al., The evolution of a transverse intra-ply crack coupled to delamination cracks. Int. J. Fract. 165, 77–92 (2010)CrossRef Z.Q. Zhou et al., The evolution of a transverse intra-ply crack coupled to delamination cracks. Int. J. Fract. 165, 77–92 (2010)CrossRef
Metadata
Title
Predicting Damage Evolution in Composites with Explicit Representation of Discrete Damage Modes
Authors
Q. D. Yang
B. C. Do
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5589-9_16

Premium Partners