Skip to main content
Top

21-08-2024 | Research

Predicting Energy Dissipation in QCA-Based Layered-T Gates Under Cell Defects and Polarisation: A Study with Machine-Learning Models

Authors: Manali Dhar, Chiradeep Mukherjee, Ananya Banerjee, Debasmita Manna, Saradindu Panda, Bansibadan Maji

Published in: Journal of Electronic Testing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The semiconductor industry has encountered the physical constraints of current semiconductor materials and the impending end of Moore's forecast. The recent edition of the International Roadmap for Devices and Systems reveals that the semiconductor industry is now combining More Moore, More than Moore and Beyond CMOS to explore the possibilities towards emerging nanotechnologies like Quantum Cellular Automata (QCA). The fast-working speed, extremely low energy and high packing density make QCA incredibly appealing. In this work, machine learning-based models are developed to predict the energy dissipation of LT universal logic gates in advance with single-cell displacement defect (SCDD) and cell polarisation. Firstly, the cell-wise energy components of the universal logic gates realised by Layered T (LT) and Majority voter (MV) and logic reduction methodologies are estimated utilising the coherence vector (watt/energy) simulation engine of QCADesigner-E. Then, SCDD is introduced at the output LT universal gates in the horizontal and vertical directions, and consequent deviation in output cell polarisation and energy dissipation are examined. A dataset, namely scdd_polarisation_energy (SPE), is created. In particular, K-Nearest Neighbour, Random Forest and Polynomial Regression-based machine learning (ML) models are found to be competent to anticipate the energy dissipation of LT universal logic gates. In ML models, the SCDD at the output cell and output polarisation are used as estimators, and energy dissipation (in electron Volt) is utilised as a response. These models offer less-complex and ease the energy estimation process in the QCA layout. The models are assessed based on r2-score, mean absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:114–117 (Publisher Item Identier-S 0018-9219(98)00753-1) Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:114–117 (Publisher Item Identier-S 0018-9219(98)00753-1)
23.
49.
go back to reference Sandhu A, Singh D, Sindhu RK (2021) Energy Dissipation Analysis of Sequential Circuits in QCA. Nat Volatiles & Essent Oils 8:1421–1431 Sandhu A, Singh D, Sindhu RK (2021) Energy Dissipation Analysis of Sequential Circuits in QCA. Nat Volatiles & Essent Oils 8:1421–1431
59.
go back to reference Tran M-K, Panchal S, Chauhan V, Brahmbhatt N, Mevawalla A, Fraser R, Fowler M (2021) Python-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery. Int J Energy Res 2(46):786–794. https://doi.org/10.1002/er.7202CrossRef Tran M-K, Panchal S, Chauhan V, Brahmbhatt N, Mevawalla A, Fraser R, Fowler M (2021) Python-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery. Int J Energy Res 2(46):786–794. https://​doi.​org/​10.​1002/​er.​7202CrossRef
Metadata
Title
Predicting Energy Dissipation in QCA-Based Layered-T Gates Under Cell Defects and Polarisation: A Study with Machine-Learning Models
Authors
Manali Dhar
Chiradeep Mukherjee
Ananya Banerjee
Debasmita Manna
Saradindu Panda
Bansibadan Maji
Publication date
21-08-2024
Publisher
Springer US
Published in
Journal of Electronic Testing
Print ISSN: 0923-8174
Electronic ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-024-06133-7