Skip to main content
Top
Published in:

23-05-2023

Predicting model of I–V characteristics of quantum-confined GaAs nanotube: a machine learning and DFT-based combined framework

Authors: Debarati Dey Roy, Debashis De

Published in: Journal of Computational Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Continuous developments of machine learning algorithms have covered the various ways to analyze the atomistic structure and characteristics of quantum-confined nanostructures effectively. This work presents a machine learning model based on a regression fine tree algorithm to resolve the current–voltage characteristics model for GaAs nanotube during quantum confinement. The nanotube is 3.52 nm long and 3.61 nm wide. This paper presents predictive distributions of the current–voltage characteristic model with a sufficiently high level of confidence. This is a challenging task due to the backscattering effect of the quantum-confined nanostructures while the channel length is beyond the mean free path. Due to this quantum interference, it is difficult to predict the current–voltage characteristics correctly for quantum-confined nanostructures. Therefore, this machine learning approach helps to predict the model almost accurately with negligible erroneous values. This framework introduces a combined approach for both DFT and machine learning algorithms with lesser time cost and high predictivity response.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Z., Ye, S., Wang, H., Huang, Q., He, J., Chang, S.: Graph representation-based machine learning framework for predicting electronic band structures of quantum-confined nanostructures. Sci. China Mater. 65(11), 3157–3170 (2022)CrossRef Wang, Z., Ye, S., Wang, H., Huang, Q., He, J., Chang, S.: Graph representation-based machine learning framework for predicting electronic band structures of quantum-confined nanostructures. Sci. China Mater. 65(11), 3157–3170 (2022)CrossRef
2.
go back to reference Carleo, G., Cirac, I., Cranmer, K., et al.: Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019)CrossRef Carleo, G., Cirac, I., Cranmer, K., et al.: Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019)CrossRef
3.
go back to reference Dral, P.O.: Quantum chemistry in the age of machine learning. J. Phys. Chem Lett 11, 2336–2347 (2020)CrossRef Dral, P.O.: Quantum chemistry in the age of machine learning. J. Phys. Chem Lett 11, 2336–2347 (2020)CrossRef
4.
go back to reference Westermayr, J., Gastegger, M., Schütt, K.T., et al.: Perspective on integrating machine learning into computational chemistry and materials science. J. Chem. Phys. 154, 230903 (2021)CrossRef Westermayr, J., Gastegger, M., Schütt, K.T., et al.: Perspective on integrating machine learning into computational chemistry and materials science. J. Chem. Phys. 154, 230903 (2021)CrossRef
5.
go back to reference Ward, L., Liu, R., Krishna, A., et al.: Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys. Rev. B 96, 024104 (2017)CrossRef Ward, L., Liu, R., Krishna, A., et al.: Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys. Rev. B 96, 024104 (2017)CrossRef
6.
go back to reference Faber, F.A., Lindmaa, A., von Lilienfeld, O.A., et al.: Machine learning energies of 2 million elpasolite (ABC2D6) crystals. Phys. Rev. Lett. 117, 135502 (2016)CrossRef Faber, F.A., Lindmaa, A., von Lilienfeld, O.A., et al.: Machine learning energies of 2 million elpasolite (ABC2D6) crystals. Phys. Rev. Lett. 117, 135502 (2016)CrossRef
7.
go back to reference Ghosh, K., Stuke, A., Todorović, M., et al.: Deep learning spectroscopy: Neural networks for molecular excitation spectra. Adv. Sci. 6, 1801367 (2019)CrossRef Ghosh, K., Stuke, A., Todorović, M., et al.: Deep learning spectroscopy: Neural networks for molecular excitation spectra. Adv. Sci. 6, 1801367 (2019)CrossRef
8.
go back to reference Carrete, J., Mingo, N., Wang, S., et al.: Nanograined half-Heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Adv. Funct. Mater. 24, 7427–7432 (2014)CrossRef Carrete, J., Mingo, N., Wang, S., et al.: Nanograined half-Heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Adv. Funct. Mater. 24, 7427–7432 (2014)CrossRef
9.
go back to reference Ju, S., Shiga, T., Feng, L., et al.: Designing nanostructures for phonon transport via Bayesian optimization. Phys. Rev. X 7, 021024 (2017) Ju, S., Shiga, T., Feng, L., et al.: Designing nanostructures for phonon transport via Bayesian optimization. Phys. Rev. X 7, 021024 (2017)
10.
go back to reference Schütt, K.T., Glawe, H., Brockherde, F., et al.: How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014)CrossRef Schütt, K.T., Glawe, H., Brockherde, F., et al.: How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014)CrossRef
11.
go back to reference Seko, A., Hayashi, H., Nakayama, K., et al.: Representation of compounds for machine-learning prediction of physical properties. Phys. Rev. B 95, 144110 (2017)CrossRef Seko, A., Hayashi, H., Nakayama, K., et al.: Representation of compounds for machine-learning prediction of physical properties. Phys. Rev. B 95, 144110 (2017)CrossRef
12.
go back to reference Xue, D., Balachandran, P.V., Hogden, J., et al.: Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016)CrossRef Xue, D., Balachandran, P.V., Hogden, J., et al.: Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016)CrossRef
13.
go back to reference Ghiringhelli, L.M., Vybiral, J., Levchenko, S.V., et al.: Big data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015)CrossRef Ghiringhelli, L.M., Vybiral, J., Levchenko, S.V., et al.: Big data of materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503 (2015)CrossRef
14.
go back to reference von Lilienfeld, O.A., Ramakrishnan, R., Rupp, M., et al.: Fourier series of atomic radial distribution functions: a molecular fingerprint for machine learning models of quantum chemical properties. Int. J. Quant. Chem. 115, 1084–1093 (2015)CrossRef von Lilienfeld, O.A., Ramakrishnan, R., Rupp, M., et al.: Fourier series of atomic radial distribution functions: a molecular fingerprint for machine learning models of quantum chemical properties. Int. J. Quant. Chem. 115, 1084–1093 (2015)CrossRef
15.
go back to reference Carapezzi, S., Boschetto, G., Todri-Sanial, A.: Capillary-force-driven self-assembly of carbon nanotubes: from ab initio calculations to modeling of self-assembly. Nanoscale Adv. 4, 4131–4137 (2022)CrossRef Carapezzi, S., Boschetto, G., Todri-Sanial, A.: Capillary-force-driven self-assembly of carbon nanotubes: from ab initio calculations to modeling of self-assembly. Nanoscale Adv. 4, 4131–4137 (2022)CrossRef
16.
go back to reference Shah, K.A., Parvaiz, M.S., Dar, G.N., Misra, P.: Carbon nanotube logic gates: An interplay of spin and light. J. Appl. Phys. 131(20), 204301 (2022)CrossRef Shah, K.A., Parvaiz, M.S., Dar, G.N., Misra, P.: Carbon nanotube logic gates: An interplay of spin and light. J. Appl. Phys. 131(20), 204301 (2022)CrossRef
17.
go back to reference Kumanek, B., Milowska, K.Z., Przypis, Ł, Stando, G., Matuszek, K., MacFarlane, D., Payne, M.C., Janas, D.: Doping engineering of single-walled carbon nanotubes by nitrogen compounds using basicity and alignment. ACS Appl. Mater. Interfaces 14(22), 25861–25877 (2022)CrossRef Kumanek, B., Milowska, K.Z., Przypis, Ł, Stando, G., Matuszek, K., MacFarlane, D., Payne, M.C., Janas, D.: Doping engineering of single-walled carbon nanotubes by nitrogen compounds using basicity and alignment. ACS Appl. Mater. Interfaces 14(22), 25861–25877 (2022)CrossRef
18.
go back to reference Singh, S., Deb, J., Sarkar, U., Sharma, S.: MoSe2/multiwalled carbon nanotube composite for ammonia sensing in natural humid environment. J. Hazard. Mater. 435, 128821 (2022)CrossRef Singh, S., Deb, J., Sarkar, U., Sharma, S.: MoSe2/multiwalled carbon nanotube composite for ammonia sensing in natural humid environment. J. Hazard. Mater. 435, 128821 (2022)CrossRef
19.
go back to reference Dixit, A., Gupta, N.: A simplified surface potential based current model for gate-allaround carbon nanotube field effect transistor (Gaa-cnfet). Int. J. Nanoelectr. Mater. 14, 159–168 (2021) Dixit, A., Gupta, N.: A simplified surface potential based current model for gate-allaround carbon nanotube field effect transistor (Gaa-cnfet). Int. J. Nanoelectr. Mater. 14, 159–168 (2021)
20.
go back to reference Dey, D., De, D., Ghaemi, F., Ahmadian, A., Abdullah, L.C.: Circuit level modeling of electrically doped adenine–thymine nanotube based field effect transistor. IEEE Access 8, 6168–6176 (2019)CrossRef Dey, D., De, D., Ghaemi, F., Ahmadian, A., Abdullah, L.C.: Circuit level modeling of electrically doped adenine–thymine nanotube based field effect transistor. IEEE Access 8, 6168–6176 (2019)CrossRef
21.
go back to reference Dey, D., Roy, P., De, D.: Atomic scale modeling of electrically doped pin FET from adenine based single wall nanotube. J. Mol. Graph. Model. 76, 118–127 (2017)CrossRef Dey, D., Roy, P., De, D.: Atomic scale modeling of electrically doped pin FET from adenine based single wall nanotube. J. Mol. Graph. Model. 76, 118–127 (2017)CrossRef
22.
go back to reference Dey, D., De, D.: A first principle approach toward circuit level modeling of electrically doped gated diode from single wall thymine nanotube-like structure. Microsyst. Technol. 24, 3107–3121 (2018)CrossRef Dey, D., De, D.: A first principle approach toward circuit level modeling of electrically doped gated diode from single wall thymine nanotube-like structure. Microsyst. Technol. 24, 3107–3121 (2018)CrossRef
24.
go back to reference Chen, Y., Shi, X., Zhou, D., Wei, H., Yang, G., Zhang, L., Su, Y.: Highly efficient SWCNT/GaAs van der Waals heterojunction solar cells enhanced by Nafion doping. J. Alloys Compd. 932, 167624 (2023)CrossRef Chen, Y., Shi, X., Zhou, D., Wei, H., Yang, G., Zhang, L., Su, Y.: Highly efficient SWCNT/GaAs van der Waals heterojunction solar cells enhanced by Nafion doping. J. Alloys Compd. 932, 167624 (2023)CrossRef
25.
go back to reference Dey, D., De, D.: First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes. Int. J. Nano Dimens. 9(2), 134–144 (2018) Dey, D., De, D.: First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes. Int. J. Nano Dimens. 9(2), 134–144 (2018)
26.
go back to reference Dey, D., Roy, P., & De, D. (2017). First principle study of structural and electronic transport properties of zigzag GaAs SWNT. In 2017 devices for integrated circuit (DevIC) (pp. 625–629). IEEE Dey, D., Roy, P., & De, D. (2017). First principle study of structural and electronic transport properties of zigzag GaAs SWNT. In 2017 devices for integrated circuit (DevIC) (pp. 625–629). IEEE
27.
go back to reference Huo, T., Yin, H., Zhou, D., Sun, L., Tian, T., Wei, H., Su, Y.: Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustain. Chem. Eng. 8(41), 15532–15539 (2020)CrossRef Huo, T., Yin, H., Zhou, D., Sun, L., Tian, T., Wei, H., Su, Y.: Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustain. Chem. Eng. 8(41), 15532–15539 (2020)CrossRef
28.
go back to reference Fathi, R., Movlarooy, T.: Electronic and structural properties of semiconductor GaAs nanotubes. J. Electron. Mater. 47, 7358–7364 (2018)CrossRef Fathi, R., Movlarooy, T.: Electronic and structural properties of semiconductor GaAs nanotubes. J. Electron. Mater. 47, 7358–7364 (2018)CrossRef
29.
go back to reference Liang, C.W., Roth, S.: Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett. 8(7), 1809–1812 (2008)CrossRef Liang, C.W., Roth, S.: Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett. 8(7), 1809–1812 (2008)CrossRef
30.
go back to reference Sadjadi, M.S., Sadeghi, B., Zare, K.: Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes,[NSOX (NPCl2) 2]; X= F (1), X= Cl (2). J. Mol. Struct. Thoechem. 817(1–3), 27–33 (2007)CrossRef Sadjadi, M.S., Sadeghi, B., Zare, K.: Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes,[NSOX (NPCl2) 2]; X= F (1), X= Cl (2). J. Mol. Struct. Thoechem. 817(1–3), 27–33 (2007)CrossRef
31.
go back to reference Abdel Halim, S.: Electronic structures and stabilities of endohedral metallofullerenes TM@ C34 using DFT approach. Int. J. Nano Dimens. 9(4), 421–434 (2018) Abdel Halim, S.: Electronic structures and stabilities of endohedral metallofullerenes TM@ C34 using DFT approach. Int. J. Nano Dimens. 9(4), 421–434 (2018)
32.
go back to reference Ahmadi, R., Jalali Sarvestani, M.R., Sadeghi, B.: Computational study of the fullerene effects on the properties of 16 different drugs: a review. Int. J. Nano Dimens. 9(4), 325–335 (2018) Ahmadi, R., Jalali Sarvestani, M.R., Sadeghi, B.: Computational study of the fullerene effects on the properties of 16 different drugs: a review. Int. J. Nano Dimens. 9(4), 325–335 (2018)
Metadata
Title
Predicting model of I–V characteristics of quantum-confined GaAs nanotube: a machine learning and DFT-based combined framework
Authors
Debarati Dey Roy
Debashis De
Publication date
23-05-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02056-2