Skip to main content
Top

2024 | OriginalPaper | Chapter

Predicting Poverty Percentage Based on Satellite Imagery and Point of Interest Using Support Vector Regression and Random Forest Regression (Case Study of Central Java Province)

Authors : I Komang Pande Prajadhita Wibawa Putra, Irhamah, Nur Iriawan, Kartika Fithriasari

Published in: Applied and Computational Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The percentage of poverty in Indonesia is quite high, on the island of Java there are provinces that have a percentage above 10%, one of which is the province of Central Java. This problem occurs because data collection is carried out conventionally with surveys and censuses so that it requires human resources, time, and large costs. Remote sensing that uses satellite imagery and Point of Interest (POI) data can provide lower costs and shorter time. The use of machine learning is often used in predicting poverty by using Support Vector Regression (SVR) with Random Forest Regression (RFR). Satellite image and POI were extracted using zonal statistics, consisting of NTL, NDVI, NDBI, NDWI, LST, CO, SO2, NO2, and POI density data. Estimating the poverty percentage in Central Java in 2021 using a method between SVR and RFR with a tenfold cross validation procedure. The regions in Central Java with low poverty percentages are Semarang City and Salatiga. There are 12 districts that have a low poverty percentage. The best model to estimate poverty in Central Java is the SVR model with the lowest MAPE, MAE, and RMSE values. The prediction results of poverty percentage in Central Java get 20 districts correctly predicted. The correlation value between actual and predicted is quite high and the average percentage error value is quite low so the model obtained is optimal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference BPS: Profil Kemiskinan di Indonesia September 2021. BPS, Jakarta (2021) BPS: Profil Kemiskinan di Indonesia September 2021. BPS, Jakarta (2021)
3.
go back to reference BPS: Statistik Indonesia 2022. BPS, Jakarta (2022) BPS: Statistik Indonesia 2022. BPS, Jakarta (2022)
4.
go back to reference Romzi, M., Pramana, S.: Pemodelan CItra Malam Untuk Estimasi Kemiskinan Desa. BPS, Jakarta (2022) Romzi, M., Pramana, S.: Pemodelan CItra Malam Untuk Estimasi Kemiskinan Desa. BPS, Jakarta (2022)
5.
go back to reference Zhao, X., Yu, B., Liu, Y., Chen, Z., Li, Q., Wang, C., Wu, J.: Estimation of poverty using random forest regression with multi-source data: a case study in Bangladesh. MDPI, 1–14 (2019) Zhao, X., Yu, B., Liu, Y., Chen, Z., Li, Q., Wang, C., Wu, J.: Estimation of poverty using random forest regression with multi-source data: a case study in Bangladesh. MDPI, 1–14 (2019)
6.
go back to reference Huang, G., Zhou, W., Cadenasso, M.: Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. ScienceDirect, 5–6 (2011) Huang, G., Zhou, W., Cadenasso, M.: Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. ScienceDirect, 5–6 (2011)
7.
go back to reference Han, C., Gu, Z., Yang, H.: EKC test of the relationship between nitrogen dioxide pollution and economic growth—a spatial econometric analysis based on Chinese city data. Int. J. Environ. Res. Public Health, 9–13 (2021) Han, C., Gu, Z., Yang, H.: EKC test of the relationship between nitrogen dioxide pollution and economic growth—a spatial econometric analysis based on Chinese city data. Int. J. Environ. Res. Public Health, 9–13 (2021)
8.
go back to reference Shi, K., Chang, Z., Chen, Z., Wu, J., Yu, B.: Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: a case study of Chongqing, China. Clean. Prod. 10–11 (2020) Shi, K., Chang, Z., Chen, Z., Wu, J., Yu, B.: Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: a case study of Chongqing, China. Clean. Prod. 10–11 (2020)
9.
go back to reference Saadah, S., Zahra, F., Haifa, H.: Support Vector Regression (SVR) Dalam Memprediksi Harga Minyak Kelapa Sawit di Indonesia dan Nilai Tukar Mata Uang EUR/USD. Telkom University Publisher, 86 (2021) Saadah, S., Zahra, F., Haifa, H.: Support Vector Regression (SVR) Dalam Memprediksi Harga Minyak Kelapa Sawit di Indonesia dan Nilai Tukar Mata Uang EUR/USD. Telkom University Publisher, 86 (2021)
10.
go back to reference Kultsum, U.: Pemodelan Persentase Penduduk Miskin Ditinjau Dari Pendidikan, Kesehatan Dan Sosial Di Jawa Timur Dengan Metode Regresi Panel. Perpustakaan ITS, Surabaya (2016) Kultsum, U.: Pemodelan Persentase Penduduk Miskin Ditinjau Dari Pendidikan, Kesehatan Dan Sosial Di Jawa Timur Dengan Metode Regresi Panel. Perpustakaan ITS, Surabaya (2016)
11.
go back to reference Kusumowidagdo, M., Kartasasmita, M., Suharini, E., Banowati, E.: Pengantar Interpretasi Citra Penginderaan Jauh. LAPAN, Jakarta (2007) Kusumowidagdo, M., Kartasasmita, M., Suharini, E., Banowati, E.: Pengantar Interpretasi Citra Penginderaan Jauh. LAPAN, Jakarta (2007)
12.
go back to reference Yeow, L.W., Low, R., Tan, Y.X., Cheah, L.: Point-of-Interest (POI) data validation methods: an urban case study. MDPI, 1–2 (2021) Yeow, L.W., Low, R., Tan, Y.X., Cheah, L.: Point-of-Interest (POI) data validation methods: an urban case study. MDPI, 1–2 (2021)
14.
go back to reference McCoy, J., Johnston, K., Kopp, S., Borup, B., Willison, J., Payne, B.: ArcGIS 9: Using ArcGIS Spatial Analyst. ESRI, USA (2002) McCoy, J., Johnston, K., Kopp, S., Borup, B., Willison, J., Payne, B.: ArcGIS 9: Using ArcGIS Spatial Analyst. ESRI, USA (2002)
15.
go back to reference Scholkopf, B., Smola, A.: Learning With Kernels. MIT Press, Boston (2002) Scholkopf, B., Smola, A.: Learning With Kernels. MIT Press, Boston (2002)
16.
go back to reference Saputra, G.H., Wigena, A.H., Sartono, B.: Penggunaan support vector regression Dalam Pemodelan Indeks Saham Syariah Indonesia Dengan Algoritme grid search. Ind. J. Stat. Appl. 150–152 (2019) Saputra, G.H., Wigena, A.H., Sartono, B.: Penggunaan support vector regression Dalam Pemodelan Indeks Saham Syariah Indonesia Dengan Algoritme grid search. Ind. J. Stat. Appl. 150–152 (2019)
17.
go back to reference Yu, P.S., Chen, S.T., Chang, I.F.: Support vector regression for real-time flood stage forecasting. J. Hydrol. 707 (2006) Yu, P.S., Chen, S.T., Chang, I.F.: Support vector regression for real-time flood stage forecasting. J. Hydrol. 707 (2006)
18.
go back to reference Ganesh, N., Jain, P., Choudhury, A., Dutta, P., Kalita, K., Barsocchi, P.: Random forest regression-based machine learning model for accurate estimation of fluid flow in curved pipes. MDPI, 4–5 (2021) Ganesh, N., Jain, P., Choudhury, A., Dutta, P., Kalita, K., Barsocchi, P.: Random forest regression-based machine learning model for accurate estimation of fluid flow in curved pipes. MDPI, 4–5 (2021)
Metadata
Title
Predicting Poverty Percentage Based on Satellite Imagery and Point of Interest Using Support Vector Regression and Random Forest Regression (Case Study of Central Java Province)
Authors
I Komang Pande Prajadhita Wibawa Putra
Irhamah
Nur Iriawan
Kartika Fithriasari
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_23

Premium Partners