Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

03-01-2021 | Issue 1/2021

Annals of Data Science 1/2021

Predicting Stock Market Price of Bangladesh: A Comparative Study of Linear Classification Models

Journal:
Annals of Data Science > Issue 1/2021
Authors:
Md. Karimuzzaman, Nusrat Islam, Sabrina Afroz, Md. Moyazzem Hossain
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Stock price prediction is a popular research domain for its complex data structure and confounding factors. The use of Data science tools enormously increased along with the advancement of data mining and artificial intelligence tools. Classification is a famous machine learning tool with vast potential use in the stock market. However, predicting stock price through a perfect classification model is vital as different stock market data have individual patterns and dependencies as precise information about increasing or decreasing the market can significantly influence selling or buying the shares. The linear model of classification including logistic regression classification (LR), linear discriminant analysis (LDA), partial last-square discriminant analysis (PLS-DA), penalized discriminant analysis (PDA), and nearest Shrunken discriminant analysis are considered in this study to compare according to predict the stock market price of top six banks stock prices of Bangladesh. The existing literature recommends that PLS-DA fit well if data contain a high correlation among the predictors. On the contrary, PDA performs better if there is any multicollinearity problem or chance of overfitting; LDA gave better approximation when data got multivariate normality, and the nearest shrunken method fit well if there is any existence of high dimensionality. Interestingly, this study's data contain all the mentioned characteristics; still, LR gives less misclassification rate or apparent error rate. Thus, this study recommends that one may choose LR among the linear classification model if there is a high correlation, multicollinearity, multivariate normality, and high-dimensionality among predictors.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

Annals of Data Science 1/2021 Go to the issue

Premium Partner

    Image Credits