Skip to main content
Top
Published in: Mechanics of Composite Materials 5/2021

24-11-2021

Predicting the Mechanical Properties of Antifriction Composite Materials

Authors: O. A. Belyak, T. V. Suvorova

Published in: Mechanics of Composite Materials | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The physical and mechanical properties of antifriction oil-filled composites with a viscoelastic nanomodified matrix are investigated on the basis of mathematical models. The identification and prediction of their mechanical properties is performed using a micromechanics model with account of experimental data obtained in nanoindentation. Solutions of new contact problems in a quasi-static formulation of the motion of a punch with a flat base into a heterogeneous oil-saturated half-space with allowance for friction in the contact area are constructed. The multiphase heterogeneous medium is described, first, within the framework of the Biot–Frenkel model and second, using the concept of effective homogeneity. The contact problem for the Biot medium is reduced to an integral equation of the first kind with a differential kernel and a logarithmic singularity. After regularization, the numerical solution of the integral equation is constructed by the boundary element method. The solution to the boundary value problem was found by the finite-element method in the ANSYS software package for an equivalent homogeneous medium. A comparative analysis of two approaches to modeling the microstructure of a heterogeneous medium is presented. The influence of mechanical properties of the composite on its stress-strain state is investigated. The magnitude of the friction force arising in the contact area of the medium is studied. Such studies are of great practical importance in investigating new nanomodified antifriction composite materials. For this purpose, numerical calculations for an oil-filled composite with a phenylone matrix and nanosize additives are presented. The influence of porosity, fluid saturation, and friction coefficient on the tangential contact stresses is also examined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. A. Lyukshin, S. V. Shilko, S. V. Panin et al., Dispersed-Filled Polymer Composites for Technical and Medical Purposes, Novosibirsk: Siberia. Branch of RAS, 2017. B. A. Lyukshin, S. V. Shilko, S. V. Panin et al., Dispersed-Filled Polymer Composites for Technical and Medical Purposes, Novosibirsk: Siberia. Branch of RAS, 2017.
2.
go back to reference V. V. Azharonok, A. G. Anisovich, V. V. Biran, S. N. Bukharov, V. P. Sergienko, and I. I. Filatova, “Changes in the physical and mechanical properties of friction composites with a polymer matrix induced by an amplitude modulated high frequency,” Electromagnetic Field Surface Eng. Appl. Electrochemistry., 50, No. 4, 300-305 (2014).CrossRef V. V. Azharonok, A. G. Anisovich, V. V. Biran, S. N. Bukharov, V. P. Sergienko, and I. I. Filatova, “Changes in the physical and mechanical properties of friction composites with a polymer matrix induced by an amplitude modulated high frequency,” Electromagnetic Field Surface Eng. Appl. Electrochemistry., 50, No. 4, 300-305 (2014).CrossRef
3.
go back to reference O. A. Naberezhnaya, A. I. Burya, and A. I. Sviridenok, “Influence of the composition of a hybrid filler on tribological properties of composites based on phenylone,” Trenie I Iznos, 41, No. 2, 145-151 (2020). O. A. Naberezhnaya, A. I. Burya, and A. I. Sviridenok, “Influence of the composition of a hybrid filler on tribological properties of composites based on phenylone,” Trenie I Iznos, 41, No. 2, 145-151 (2020).
4.
go back to reference K. Friedrich, “Polymer composites for tribological applications,” Adv. Industrial Eng. Polym. Res., 1, No. 1, 3-39 (2018).CrossRef K. Friedrich, “Polymer composites for tribological applications,” Adv. Industrial Eng. Polym. Res., 1, No. 1, 3-39 (2018).CrossRef
5.
go back to reference I. V. Kolesnikov, System Analysis and Synthesis of Processes Occurring in Metal-Polymer Nodes of Friction and Antifriction [in Russian], M., VINITI RAN (2017). I. V. Kolesnikov, System Analysis and Synthesis of Processes Occurring in Metal-Polymer Nodes of Friction and Antifriction [in Russian], M., VINITI RAN (2017).
6.
go back to reference A. A. Okhlopkova, P. N. Petrova, and A. G. Parnikova, “Influence of the structure of polytetrafluoroethylene-based nanocomposites on their tribotechnical characteristics,” J. Friction and Wear, 30, 425-430 (2009).CrossRef A. A. Okhlopkova, P. N. Petrova, and A. G. Parnikova, “Influence of the structure of polytetrafluoroethylene-based nanocomposites on their tribotechnical characteristics,” J. Friction and Wear, 30, 425-430 (2009).CrossRef
7.
go back to reference S. V. Shilko, D. A. Chernous, S. Panin, and H. A. Choe, “Method for predicting the parameters of plastic deformation of dispersedly reinforced materials by using a modified Mori–Tanaka model,” Mech. Compos. Mater., 57, No. 2, 153-160 (2021). S. V. Shilko, D. A. Chernous, S. Panin, and H. A. Choe, “Method for predicting the parameters of plastic deformation of dispersedly reinforced materials by using a modified Mori–Tanaka model,” Mech. Compos. Mater., 57, No. 2, 153-160 (2021).
8.
go back to reference I. G. Goryacheva, Yu. Yu. Makhovskaya, A.V. Morozov, and F. I. Stepanov, Friction of Elastomers. Modeling and Experiment [in Russian], M., Izhevsk, Inst. Komput. Issled. (2020). I. G. Goryacheva, Yu. Yu. Makhovskaya, A.V. Morozov, and F. I. Stepanov, Friction of Elastomers. Modeling and Experiment [in Russian], M., Izhevsk, Inst. Komput. Issled. (2020).
9.
go back to reference E. V. Torskaya, Models of Frictional Interaction of Bodies with Coatings [in Russian], M., Izhevsk, Inst. Komput. Issled. (2017). E. V. Torskaya, Models of Frictional Interaction of Bodies with Coatings [in Russian], M., Izhevsk, Inst. Komput. Issled. (2017).
10.
go back to reference V. A. Babeshko, O. V Evdokimova, and O. M. Babeshko, “Block elements in contact problems with a variable friction coefficient,” Dokl. RAS, 480, No. 5, 537-541 (2018). V. A. Babeshko, O. V Evdokimova, and O. M. Babeshko, “Block elements in contact problems with a variable friction coefficient,” Dokl. RAS, 480, No. 5, 537-541 (2018).
11.
go back to reference T. V. Suvorova and O. A. Belyak, “Contact problems for a porous elastic composite in the presence of friction forces,” Prikl. Mat. Mekh., 84, No. 4, 529-539 (2020) T. V. Suvorova and O. A. Belyak, “Contact problems for a porous elastic composite in the presence of friction forces,” Prikl. Mat. Mekh., 84, No. 4, 529-539 (2020)
12.
go back to reference K. N. Dolgopolov, I. V. Kolesnikov, and E. L. Melnikov, “Application of antifriction polymeric self-lubricating materials of “Maslyanite” class in sliding friction units,” Remont Vosstanovl. Modernizts., No. 4, 23-26 (2018). K. N. Dolgopolov, I. V. Kolesnikov, and E. L. Melnikov, “Application of antifriction polymeric self-lubricating materials of “Maslyanite” class in sliding friction units,” Remont Vosstanovl. Modernizts., No. 4, 23-26 (2018).
13.
go back to reference M. A. Biot, “Mechanics of deformation and propagation of acoustic waves in a porous medium,” Zhurn. Perevodov Inostr. Statei, 6, No. 82, 103-134 (1963). M. A. Biot, “Mechanics of deformation and propagation of acoustic waves in a porous medium,” Zhurn. Perevodov Inostr. Statei, 6, No. 82, 103-134 (1963).
14.
go back to reference G. Degrande, G. De Roeck, P. Van Den Breck, and D. Smeulders, “Wave propagation in layered dry, saturated and unsaturated poroelastic media,” Int. J. Solids Struct., 35 (34-35), 4753-4778 (1998).CrossRef G. Degrande, G. De Roeck, P. Van Den Breck, and D. Smeulders, “Wave propagation in layered dry, saturated and unsaturated poroelastic media,” Int. J. Solids Struct., 35 (34-35), 4753-4778 (1998).CrossRef
15.
go back to reference O. A. Belyak and T. V. Suvorova, “Modeling stress deformed state upon contact with the bodies of two-phase microstructure,” Solid State Phenomena, 299, 124-129 (2020).CrossRef O. A. Belyak and T. V. Suvorova, “Modeling stress deformed state upon contact with the bodies of two-phase microstructure,” Solid State Phenomena, 299, 124-129 (2020).CrossRef
16.
go back to reference I. Sevostianov and A. Giraud, “Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape,” Int. J. Eng. Sci., 64, 23-36 (2013).CrossRef I. Sevostianov and A. Giraud, “Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape,” Int. J. Eng. Sci., 64, 23-36 (2013).CrossRef
17.
go back to reference S. Giordano, “Differential schemes for the elastic characterization of dispersions of randomly oriented ellipsoids,” European J. Mech. A / Solids, 22, No. 6, 885 -902 (2003).CrossRef S. Giordano, “Differential schemes for the elastic characterization of dispersions of randomly oriented ellipsoids,” European J. Mech. A / Solids, 22, No. 6, 885 -902 (2003).CrossRef
18.
go back to reference R. Christensen, Introduction to the Mechanics of Composites, M., Mir (1982). R. Christensen, Introduction to the Mechanics of Composites, M., Mir (1982).
19.
go back to reference E. V. Golyeva, M. D. Mikhailov, A. A. Dunaev, and B. A. Ignatenkov, “Influence of synthesis conditions and structure of initial nanocrystalline powders on optical properties of transparent MgAl2O4 ceramics,” Opt. Zhurn, 83, No. 2, 67-72 (2016). E. V. Golyeva, M. D. Mikhailov, A. A. Dunaev, and B. A. Ignatenkov, “Influence of synthesis conditions and structure of initial nanocrystalline powders on optical properties of transparent MgAl2O4 ceramics,” Opt. Zhurn, 83, No. 2, 67-72 (2016).
20.
go back to reference P. G. Ivanochkin, K. N. Dolgopolov, and S. A. Danilchenko, “Creation of oil-filled composites of tribotechnical purpose based on aromatic polyamide phenylone C-2,” Solid State Phenomena, 284, 14-19 (2018).CrossRef P. G. Ivanochkin, K. N. Dolgopolov, and S. A. Danilchenko, “Creation of oil-filled composites of tribotechnical purpose based on aromatic polyamide phenylone C-2,” Solid State Phenomena, 284, 14-19 (2018).CrossRef
21.
go back to reference K. B. Ustinov, “On the determination of the effective elastic characteristics of two-phase media. The case of isolated inhomogeneities in the form of ellipsoids of revolution,” Uspekhi Mekhaniki, 2, No. 2, 126-168 (2003). K. B. Ustinov, “On the determination of the effective elastic characteristics of two-phase media. The case of isolated inhomogeneities in the form of ellipsoids of revolution,” Uspekhi Mekhaniki, 2, No. 2, 126-168 (2003).
22.
go back to reference Z. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. App. Physics, 33, 3125-3131 (1962).CrossRef Z. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. App. Physics, 33, 3125-3131 (1962).CrossRef
23.
go back to reference V. I. Kolesnikov, O. A. Belyak, I. V. Kolesnikov, and T. V. Suvorova, “On a mathematical model for predicting the tribological properties of oil-filled composites under vibration,” Dokl. RAS, 491, 44-47 (2020). V. I. Kolesnikov, O. A. Belyak, I. V. Kolesnikov, and T. V. Suvorova, “On a mathematical model for predicting the tribological properties of oil-filled composites under vibration,” Dokl. RAS, 491, 44-47 (2020).
24.
go back to reference O. A. Belyak and T. V. Suvorova, “On the influence of the interaction of phases of a heterogeneous base on contact stresses during vibrations of a stamp with friction,” Ekolog. Vestn. Nauch. Centr. Chernomor. Ekonom. Sotrudn., 17, No. 3, 29-36 (2020). O. A. Belyak and T. V. Suvorova, “On the influence of the interaction of phases of a heterogeneous base on contact stresses during vibrations of a stamp with friction,” Ekolog. Vestn. Nauch. Centr. Chernomor. Ekonom. Sotrudn., 17, No. 3, 29-36 (2020).
25.
go back to reference V. I. Kolesnikov, T. V. Suvorova, and O. A. Belyak, “Modeling antifriction properties of composite based on dynamic contact problem for a heterogeneous foundation,” Mater. Phys. Mech., 46, No. 1, 139-148 (2020). V. I. Kolesnikov, T. V. Suvorova, and O. A. Belyak, “Modeling antifriction properties of composite based on dynamic contact problem for a heterogeneous foundation,” Mater. Phys. Mech., 46, No. 1, 139-148 (2020).
26.
go back to reference N. Mexmet Balci and Dag Serkan, “Dynamic frictional contact problems involving elastic coating,” Tribology Int., 124, 70-92 (2018).CrossRef N. Mexmet Balci and Dag Serkan, “Dynamic frictional contact problems involving elastic coating,” Tribology Int., 124, 70-92 (2018).CrossRef
Metadata
Title
Predicting the Mechanical Properties of Antifriction Composite Materials
Authors
O. A. Belyak
T. V. Suvorova
Publication date
24-11-2021
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 5/2021
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09986-7

Other articles of this Issue 5/2021

Mechanics of Composite Materials 5/2021 Go to the issue

Premium Partners