Skip to main content
Top

2025 | OriginalPaper | Chapter

Predicting the Shear Strength of Granular Waste Materials Using Machine Learning

Authors : Haydn Hunt, Buddhima Indraratna, Yujie Qi

Published in: Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Volume 1

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Knowing the shear strength of soil is imperative for geotechnical design as shear failure, combined with excessive deformations, is the predominant failure mechanism within a loading environment. However, determining the shear strength in the laboratory is often laborious and hence costly. Moreover, a granular material’s behavior is complex which can compromise the accuracy and robustness of predictive models developed through traditional methods. This is exacerbated when considering non-traditional waste materials such as steel furnace slag, coal wash, and scrap rubber due to their increased nonlinearity and variability. Consequently, previous relationships and models proposed are often self-contained and break down when extrapolated beyond specific loading conditions or material types. In this study, predictive models for the peak friction angle (ϕpeak) of various granular mixtures (waste and non-waste) were developed using two nonlinear machine learning (ML) techniques, namely, artificial neural network (ANN) and second-order multivariable regression (MR). Five key parameters were chosen to represent the mixture type (rubber content, median particle size), its physical properties (initial void ratio, dry unit weight), and the loading condition (effective confining pressure) using 154 consolidated drained triaxial test data samples. Although MR performed satisfactorily on both the original and secondary datasets, ANN combined with Bayesian regularisation was superior with R2 of 0.96 and 0.82 for both phases, respectively. Hence, ANN is an attractive modelling technique as it is capable of capturing nonlinear relationships for various granular mixtures (i.e., waste and non-waste, with and without rubber) to predict shear strength without the need for laboratory testing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Hunt H, Indraratna B, Qi Y (2023) Ductility and energy absorbing behaviour of coal wash-rubber crumb mixtures. Int J Rail Transp 11(4):508–528CrossRef Hunt H, Indraratna B, Qi Y (2023) Ductility and energy absorbing behaviour of coal wash-rubber crumb mixtures. Int J Rail Transp 11(4):508–528CrossRef
3.
go back to reference Indraratna B, Qi Y, Heitor A (2018) Evaluating the properties of mixtures of steel furnace slag, coal wash, and rubber crumbs used as subballast. J Mater Civ Eng 30(1):04017251CrossRef Indraratna B, Qi Y, Heitor A (2018) Evaluating the properties of mixtures of steel furnace slag, coal wash, and rubber crumbs used as subballast. J Mater Civ Eng 30(1):04017251CrossRef
4.
go back to reference Lee JS, Dodds J, Santamarina JC (2007) Behavior of rigid-soft particle mixtures. J Mater Civ Eng 19(2):179–184CrossRef Lee JS, Dodds J, Santamarina JC (2007) Behavior of rigid-soft particle mixtures. J Mater Civ Eng 19(2):179–184CrossRef
5.
go back to reference Rujikiatkamjorn C, Indraratna B, Chiaro G (2013) Compaction of coal wash to optimise its utilisation as water-front reclamation fill. Geomech Geoeng 8(1):36–45CrossRef Rujikiatkamjorn C, Indraratna B, Chiaro G (2013) Compaction of coal wash to optimise its utilisation as water-front reclamation fill. Geomech Geoeng 8(1):36–45CrossRef
6.
go back to reference Sheikh MN, Mashiri MS, Vinod JS, Tsang H-H (2013) Shear and compressibility behavior of sand-tire crumb mixtures. J Mater Civ Eng 25(10):1366–1374CrossRef Sheikh MN, Mashiri MS, Vinod JS, Tsang H-H (2013) Shear and compressibility behavior of sand-tire crumb mixtures. J Mater Civ Eng 25(10):1366–1374CrossRef
7.
go back to reference Qi Y, Indraratna B, Heitor A, Vinod JS (2018) The influence of rubber crumbs on the energy absorbing property of waste mixtures. In: Proceedings of the international symposium on geotechnics of transportation infrastructure (ISGTI 2018). Indian Institute of Technology Delhi, India, pp 455–460 Qi Y, Indraratna B, Heitor A, Vinod JS (2018) The influence of rubber crumbs on the energy absorbing property of waste mixtures. In: Proceedings of the international symposium on geotechnics of transportation infrastructure (ISGTI 2018). Indian Institute of Technology Delhi, India, pp 455–460
8.
go back to reference Indraratna B, Rujikiatkamjorn C, Tawk M, Heitor A (2019) Compaction, degradation and deformation characteristics of an energy absorbing matrix. Transp Geotech 19:74–83CrossRef Indraratna B, Rujikiatkamjorn C, Tawk M, Heitor A (2019) Compaction, degradation and deformation characteristics of an energy absorbing matrix. Transp Geotech 19:74–83CrossRef
9.
go back to reference Arachchige CMK, Indraratna B, Qi Y, Vinod JS, Rujikiatkamjorn C (2021) Geotechnical characteristics of a rubber intermixed ballast system. Acta Geotech 17:1847–1858CrossRef Arachchige CMK, Indraratna B, Qi Y, Vinod JS, Rujikiatkamjorn C (2021) Geotechnical characteristics of a rubber intermixed ballast system. Acta Geotech 17:1847–1858CrossRef
10.
go back to reference Simoni A, Houlsby GT (2006) The direct shear strength and dilatancy of sand–gravel mixtures. Geotech Geol Eng 24:523–549CrossRef Simoni A, Houlsby GT (2006) The direct shear strength and dilatancy of sand–gravel mixtures. Geotech Geol Eng 24:523–549CrossRef
11.
go back to reference Tawk M, Indraratna B (2021) Role of rubber crumbs on the stress-strain response of a coal wash matrix. J Mater Civ Eng 33(3):04020480CrossRef Tawk M, Indraratna B (2021) Role of rubber crumbs on the stress-strain response of a coal wash matrix. J Mater Civ Eng 33(3):04020480CrossRef
12.
go back to reference Abozraig M, Ok B, Yildiz A (2022) Determination of shear strength of coarse-grained soils based on their index properties: a comparison between different statistical approaches. Arab J Geosci 15(593):1–17 Abozraig M, Ok B, Yildiz A (2022) Determination of shear strength of coarse-grained soils based on their index properties: a comparison between different statistical approaches. Arab J Geosci 15(593):1–17
13.
go back to reference Li D (1994) Railway track granular layer thickness design based on subgrade performance under repeated loading. University of Massachusetts, Amherst, Massachusetts, Doctor of Philosophy Li D (1994) Railway track granular layer thickness design based on subgrade performance under repeated loading. University of Massachusetts, Amherst, Massachusetts, Doctor of Philosophy
14.
go back to reference Indraratna B, Armaghani DJ, Correia AG, Hunt H, Ngo T (2023) Prediction of resilient modulus of ballast under cyclic loading using machine learning techniques. Transp Geotech 38:100895CrossRef Indraratna B, Armaghani DJ, Correia AG, Hunt H, Ngo T (2023) Prediction of resilient modulus of ballast under cyclic loading using machine learning techniques. Transp Geotech 38:100895CrossRef
15.
go back to reference Shahin MA, Jaksa MB, Maier HR (2001) Artificial neural network applications in geotechnical engineering. Aust Geomech 36(1):49–62 Shahin MA, Jaksa MB, Maier HR (2001) Artificial neural network applications in geotechnical engineering. Aust Geomech 36(1):49–62
16.
go back to reference Ebid AM (2021) 35 years of (AI) in geotechnical engineering: state of the art. Geotech Geol Eng 39:637–690CrossRef Ebid AM (2021) 35 years of (AI) in geotechnical engineering: state of the art. Geotech Geol Eng 39:637–690CrossRef
17.
go back to reference Zhu J, Zaman MM, Anderson SA (1998) Modelling of shearing behaviour of a residual soil with recurrent neural network. Int J Numer Anal Meth Geomech 22:671–687CrossRef Zhu J, Zaman MM, Anderson SA (1998) Modelling of shearing behaviour of a residual soil with recurrent neural network. Int J Numer Anal Meth Geomech 22:671–687CrossRef
18.
go back to reference Besalatpour M, Hajabbasi MA, Ayoubi S, Afyuni A, Jalalian A, Schulin R (2012) Soil shear strength prediction using intelligent systems: artificial neural networks and an adaptive neuro-fuzzy inference system. Soil Sci Plant Nutr 58:149–160CrossRef Besalatpour M, Hajabbasi MA, Ayoubi S, Afyuni A, Jalalian A, Schulin R (2012) Soil shear strength prediction using intelligent systems: artificial neural networks and an adaptive neuro-fuzzy inference system. Soil Sci Plant Nutr 58:149–160CrossRef
19.
go back to reference Edincliler A, Cabalar AF, Cagatay A, Cevik A (2012) Triaxial compression behavior of sand and tire wastes using neural networks. Neural Comput Appl 21:441–452CrossRef Edincliler A, Cabalar AF, Cagatay A, Cevik A (2012) Triaxial compression behavior of sand and tire wastes using neural networks. Neural Comput Appl 21:441–452CrossRef
20.
go back to reference Dutta RK, Dutta K, Jeevanandham S (2015) Prediction of deviator stress of sand reinforced with waste plastic strips using neural network. Int J Geosynth Ground Eng 1(11):1–12 Dutta RK, Dutta K, Jeevanandham S (2015) Prediction of deviator stress of sand reinforced with waste plastic strips using neural network. Int J Geosynth Ground Eng 1(11):1–12
21.
go back to reference Indraratna B, Ionescu D, Christie D (1998) Shear behavior of railway ballast based on large-scale triaxial tests. J Geotech Geoenviron Eng 124(5):439–449CrossRef Indraratna B, Ionescu D, Christie D (1998) Shear behavior of railway ballast based on large-scale triaxial tests. J Geotech Geoenviron Eng 124(5):439–449CrossRef
22.
go back to reference Noorzad R, Raveshi M (2017) Mechanical behavior of waste tire crumbs–sand mixtures determined by triaxial tests. Geotech Geol Eng 35:1793–1802CrossRef Noorzad R, Raveshi M (2017) Mechanical behavior of waste tire crumbs–sand mixtures determined by triaxial tests. Geotech Geol Eng 35:1793–1802CrossRef
23.
go back to reference Tasalloti SMA (2015) Behaviour of blended waste materials for land reclamation for port extension. University of Wollongong, Australia, Doctor of Philosophy Tasalloti SMA (2015) Behaviour of blended waste materials for land reclamation for port extension. University of Wollongong, Australia, Doctor of Philosophy
24.
go back to reference Kaliboullah CI (2016) Behaviour of compacted coalwash under saturated condition incorporating particle breakage. University of Wollongong, Australia, Doctor of Philosophy Kaliboullah CI (2016) Behaviour of compacted coalwash under saturated condition incorporating particle breakage. University of Wollongong, Australia, Doctor of Philosophy
25.
go back to reference Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15:101–124CrossRef Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15:101–124CrossRef
26.
go back to reference Shahin MA, Jaksa MB, Maier HR (2008) State of the art of artificial neural networks in geotechnical engineering. Electron J Geotech Eng 8:1–26 Shahin MA, Jaksa MB, Maier HR (2008) State of the art of artificial neural networks in geotechnical engineering. Electron J Geotech Eng 8:1–26
28.
go back to reference Foresee FD, Hagan MT (1997) Gauss-Newton approximation to Bayesian learning. In: Proceedings of the IEEE international conference on neural networks. Houston, TX, USA, pp 1930–1935 Foresee FD, Hagan MT (1997) Gauss-Newton approximation to Bayesian learning. In: Proceedings of the IEEE international conference on neural networks. Houston, TX, USA, pp 1930–1935
29.
go back to reference Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc B-36 111–147 Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc B-36 111–147
30.
go back to reference Hanna A (2001) Determination of plane-strain shear strength of sand from the results of triaxial tests. Can Geotech J 38:1231–1240CrossRef Hanna A (2001) Determination of plane-strain shear strength of sand from the results of triaxial tests. Can Geotech J 38:1231–1240CrossRef
31.
go back to reference Disfani MM, Tsang H-H, Arulrajah A, Yaghoubi E (2017) Shear and compression characteristics of recycled glass-tire mixtures. J Mater Civ Eng 29(6):06017003CrossRef Disfani MM, Tsang H-H, Arulrajah A, Yaghoubi E (2017) Shear and compression characteristics of recycled glass-tire mixtures. J Mater Civ Eng 29(6):06017003CrossRef
Metadata
Title
Predicting the Shear Strength of Granular Waste Materials Using Machine Learning
Authors
Haydn Hunt
Buddhima Indraratna
Yujie Qi
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8213-0_17