Skip to main content
Top

2024 | OriginalPaper | Chapter

Prediction Model of Product Quality in Production Company: Based on PCA and Logistic Regression

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper presents the possibility of implementation the Principle Component Analysis (PCA) and logistic regression to develop the decision tool supporting quality of oil inserts for candles production process. The research methodology was divided into three stages: collecting data from the production process, using the PCA method to reduce the dimensionality of the production process parameters, and using logistic regression to develop a predictive model for assessing the quality of products. The results of the research showed that it was enough to have five main components to keep about 84% of the information on variability. In the third stage the logistic regression to develop the predictive model of product quality in production company was used. The developed model explain the impact of the production parameters on product quality. In addition, this decision tool will help the managers in the company identification the improvement actions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Burduk, A., Lapczynska, D., Popiel, P.: Simulation modeling in production effectiveness improvement–case study. Manag. Prod. Eng. Rev. 12(2), 75–85 (2021) Burduk, A., Lapczynska, D., Popiel, P.: Simulation modeling in production effectiveness improvement–case study. Manag. Prod. Eng. Rev. 12(2), 75–85 (2021)
2.
go back to reference Estrada-Vargas, A.P., Lopez-Mellado, E., Lesage, J.-J.: Input-output identification of controlled discrete manufacturing systems. Int. J. Syst. Sci. 45, 456–471 (2014)MathSciNetCrossRef Estrada-Vargas, A.P., Lopez-Mellado, E., Lesage, J.-J.: Input-output identification of controlled discrete manufacturing systems. Int. J. Syst. Sci. 45, 456–471 (2014)MathSciNetCrossRef
3.
go back to reference Lisboa, M., Jesus, E., Seixas, R., Valle, P., Deschamps, F., Strobel, C.: Improve industrial performance based on systematic analyses of manufacturing data. IFAC PapersOnline 54(1), 709–716 (2021)CrossRef Lisboa, M., Jesus, E., Seixas, R., Valle, P., Deschamps, F., Strobel, C.: Improve industrial performance based on systematic analyses of manufacturing data. IFAC PapersOnline 54(1), 709–716 (2021)CrossRef
4.
go back to reference Zhou, H., Yu, K.M., Chen, Y.C., Hsu, H.P.: A hybrid feature selection method RFSTL for manufacturing quality prediction on a high dimensional imbalanced dataset. IEEE Access 9, 29719–29735 (2021)CrossRef Zhou, H., Yu, K.M., Chen, Y.C., Hsu, H.P.: A hybrid feature selection method RFSTL for manufacturing quality prediction on a high dimensional imbalanced dataset. IEEE Access 9, 29719–29735 (2021)CrossRef
5.
go back to reference Venkatesan, G.: Process control of product quality. ISA Trans. 42(4), 631–641 (2003)CrossRef Venkatesan, G.: Process control of product quality. ISA Trans. 42(4), 631–641 (2003)CrossRef
6.
go back to reference Geng, J.H., Gao Q.S.: Economical control in industrial product quality. Dyn. Continous Discrete Impulsive Syst.–Math. Anal. 13, 741–743 (2006) Geng, J.H., Gao Q.S.: Economical control in industrial product quality. Dyn. Continous Discrete Impulsive Syst.–Math. Anal. 13, 741–743 (2006)
7.
go back to reference Smajdova T.: Nonparametric statistical process control. In: Sujova, A. (Ed.) Management and Economics in Manufacturing, Zvolen: Technical University of Zvolen, pp. 252–257 (2017) Smajdova T.: Nonparametric statistical process control. In: Sujova, A. (Ed.) Management and Economics in Manufacturing, Zvolen: Technical University of Zvolen, pp. 252–257 (2017)
8.
go back to reference Galaktionova, Y.A., Ibragimova, E.K., Bekisheva, E.V.: On product quality control. Fibre Chem. 38(1), 79–82 (2006)CrossRef Galaktionova, Y.A., Ibragimova, E.K., Bekisheva, E.V.: On product quality control. Fibre Chem. 38(1), 79–82 (2006)CrossRef
9.
go back to reference Zhang, D.H., Liu, Z.Y., Jia, W.Q., Liu, H., Tan, J.R.: Path enhanced bidirectional graph attention network for quality prediction in multistage manufacturing process. IEEE Trans. Industr. Inf. 18(2), 1018–1027 (2022)CrossRef Zhang, D.H., Liu, Z.Y., Jia, W.Q., Liu, H., Tan, J.R.: Path enhanced bidirectional graph attention network for quality prediction in multistage manufacturing process. IEEE Trans. Industr. Inf. 18(2), 1018–1027 (2022)CrossRef
10.
go back to reference Devotta, S., Chelani, A., Vonsild, A.: Prediction of flammability classifications of refrigerants by artificial neural network and random forest model. Int. J. Refrig. 131, 947–955 (2021)CrossRef Devotta, S., Chelani, A., Vonsild, A.: Prediction of flammability classifications of refrigerants by artificial neural network and random forest model. Int. J. Refrig. 131, 947–955 (2021)CrossRef
12.
go back to reference Martins, L., Varela, M.L.R., Fernandes, N.O., Carmo-Silva, S., Machado, J.: Literature review on autonomous production control methods. Enterp. Inf. Syst. 14(8), 1219–1231 (2020)CrossRef Martins, L., Varela, M.L.R., Fernandes, N.O., Carmo-Silva, S., Machado, J.: Literature review on autonomous production control methods. Enterp. Inf. Syst. 14(8), 1219–1231 (2020)CrossRef
13.
go back to reference Rea, P., Pelliccio, A., Ottaviano, E., Saccucci, M.: The heritage management and preservation using the mechatronic survey. Int. J. Architectural Heritage 11(8), 1121–1132 (2017) Rea, P., Pelliccio, A., Ottaviano, E., Saccucci, M.: The heritage management and preservation using the mechatronic survey. Int. J. Architectural Heritage 11(8), 1121–1132 (2017)
14.
go back to reference Yan, H., Sergin, N.D., Brenneman, W.A., Lange, S.J., Ba, S.: Deep multi-task learning from quality prediction of multistage manufacturing systems. J. Qual. Technol. 53, 526–544 (2021)CrossRef Yan, H., Sergin, N.D., Brenneman, W.A., Lange, S.J., Ba, S.: Deep multi-task learning from quality prediction of multistage manufacturing systems. J. Qual. Technol. 53, 526–544 (2021)CrossRef
15.
go back to reference Lim, D.K., Mustapha, K.B., Pagwiwoko, C.P.: Delamination detection in composite plates using random forests. Compos. Struct. 278, 114676 (2021)CrossRef Lim, D.K., Mustapha, K.B., Pagwiwoko, C.P.: Delamination detection in composite plates using random forests. Compos. Struct. 278, 114676 (2021)CrossRef
16.
go back to reference Zhou, H., Yu, K.M., Chen, Y.C., Hsu, H.P.: A hybrid feature selection method RFSTL for manufacturing quality prediction based on a high dimensional imbalanced dataset. IEEE Access 9, 29719–29735 (2021)CrossRef Zhou, H., Yu, K.M., Chen, Y.C., Hsu, H.P.: A hybrid feature selection method RFSTL for manufacturing quality prediction based on a high dimensional imbalanced dataset. IEEE Access 9, 29719–29735 (2021)CrossRef
17.
go back to reference Jun, J.H., Chang, T.W., Jun, S.: Quality prediction and yield improvement in process manufacturing based on data analytics. Processes 8(8), 1068 (2020)CrossRef Jun, J.H., Chang, T.W., Jun, S.: Quality prediction and yield improvement in process manufacturing based on data analytics. Processes 8(8), 1068 (2020)CrossRef
18.
go back to reference Jung, H., Jeon, J., Choi, D., Park, J.Y.: Application of machine learning techniques in injection molding quality prediction: implications on sustainable manufacturing industry. Sustainability 13(8), 4120 (2021)CrossRef Jung, H., Jeon, J., Choi, D., Park, J.Y.: Application of machine learning techniques in injection molding quality prediction: implications on sustainable manufacturing industry. Sustainability 13(8), 4120 (2021)CrossRef
Metadata
Title
Prediction Model of Product Quality in Production Company: Based on PCA and Logistic Regression
Author
Katarzyna Antosz
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_50

Premium Partner