Skip to main content
Top

2024 | OriginalPaper | Chapter

Prediction of Aggregate Gradation of Bituminous Mixtures Using Image Analysis

Authors : Pranav Yogesh Bharadkar, Anush K. Chandrappa, Umesh C. Sahoo

Published in: Sustainable Design and Eco Technologies for Infrastructure

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The gradation in the bituminous mixtures plays a significant role in predicting its performance. Laboratory experiments such as centrifugal extraction method and ignition method are used to determine the gradation. However, the solvents used in centrifugal extraction method are considered to be carcinogenic. Since then, several studies have focused on using the principles of image analysis to determine the gradation from the images. However, limited studies are conducted on evaluating the suitability of image acquisition methods and comparing different particle size estimation algorithms. In this study, the gradation of dense bituminous concrete (BC-19) and open-graded friction course (OGFC) were predicted using the principles of image processing and analysis. The experimental variables included compaction method (Marshall and SuperPave gyratory method), sectioning method (vertical and horizontal sectioning’s), and particle size estimation algorithm (circle fitting and contour fitting methods). The analysis results indicated that gradation predicted from the images was found to be finer above the cut-off sieve size and coarser below the cut-off sieve size. The gradation predicted from images obtained using Marshall method of compaction agreed well with gradation that was used in specimen preparation compared to SuperPave gyratory compaction method. The combination of the horizontal sectioning method with circle fitting algorithm has resulted in highest R2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference Manual 38 (2019) A Health and Safety Guide for Material Testing Laboratories in the Road Construction Industry, South African Bitumen Association (SABITA), ISBN: 978-1-874968-78-8 Manual 38 (2019) A Health and Safety Guide for Material Testing Laboratories in the Road Construction Industry, South African Bitumen Association (SABITA), ISBN: 978-1-874968-78-8
4.
go back to reference Driscoll T, Darcey E, Carey R, Reid A, Fritschi L (2016) The Australian work exposures study (AWES): carcinogen exposures in the construction industry. Canberra: Safe Work Australia. ISBN: 978-1-76028-673-6 Driscoll T, Darcey E, Carey R, Reid A, Fritschi L (2016) The Australian work exposures study (AWES): carcinogen exposures in the construction industry. Canberra: Safe Work Australia. ISBN: 978-1-76028-673-6
5.
go back to reference Zelelew HM, Papagiannakis AT, Masad E (2008) Application of digital image processing techniques for asphalt concrete mixture images. In: The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG), pp 119–124 Zelelew HM, Papagiannakis AT, Masad E (2008) Application of digital image processing techniques for asphalt concrete mixture images. In: The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG), pp 119–124
6.
go back to reference Janaka GHA, Kumara J, Hayano K, Ogiwara K (2012) Image analysis techniques on evaluation of particle size distribution of gravel. Int J GEOMATE 3(1)(Sl. No. 5):290–297. ISSN: 2186-2982(P), 2186-2990(O) Janaka GHA, Kumara J, Hayano K, Ogiwara K (2012) Image analysis techniques on evaluation of particle size distribution of gravel. Int J GEOMATE 3(1)(Sl. No. 5):290–297. ISSN: 2186-2982(P), 2186-2990(O)
8.
go back to reference Yue ZQ, Morin I (1996) Digital image processing for aggregate orientation in asphalt concrete mixtures. Can J Civ Eng 23:480–489CrossRef Yue ZQ, Morin I (1996) Digital image processing for aggregate orientation in asphalt concrete mixtures. Can J Civ Eng 23:480–489CrossRef
11.
go back to reference Moon KH, Falchetto AC, Wistuba MP, Jeong JH (2015) Analyzing aggregate size distributionof asphalt mixtures using simple 2D digital image processing techniques. Arabian J Sci Eng 40:1309–1326 Moon KH, Falchetto AC, Wistuba MP, Jeong JH (2015) Analyzing aggregate size distributionof asphalt mixtures using simple 2D digital image processing techniques. Arabian J Sci Eng 40:1309–1326
Metadata
Title
Prediction of Aggregate Gradation of Bituminous Mixtures Using Image Analysis
Authors
Pranav Yogesh Bharadkar
Anush K. Chandrappa
Umesh C. Sahoo
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8465-7_14