Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

11-11-2017 | Original Article | Issue 2/2018

Engineering with Computers 2/2018

Prediction of bearing capacity of thin-walled foundation: a simulation approach

Journal:
Engineering with Computers > Issue 2/2018
Authors:
Ehsan Momeni, Danial Jahed Armaghani, Seyed Alireza Fatemi, Ramli Nazir

Abstract

In the recent past years, utilization of intelligent models for solving geotechnical problems has received considerable attention. This paper highlights the feasibility of adaptive neuro-fuzzy inference system (ANFIS) for predicting the bearing capacity of thin-walled foundations. For this reason, a data set comprising nearly 150 recorded cases of footing load tests was compiled from literature. Footing width, wall length-to-footing width ratio, internal friction angle, and unit weight of soil were set as inputs of the predictive model of bearing capacity. In addition, a pre-developed artificial neural network (ANN) model was utilized to estimate the bearing capacity of thin-walled foundations. The results recommend the workability of ANFIS in predicting the bearing capacity of thin-walled foundation. The coefficient of determination (R 2) results of 0.933 and 0.875, and root mean square error (RMSE) results of 0.075 and 0.048 for training and testing data sets show higher accuracy and efficiency level of ANFIS in estimating bearing capacity of thin-walled spread foundations compared to the ANN model (R 2 = 0.710, RMSE = 0.512 for train, R 2 = 0.420, RMSE = 0.529 for test). Overall, findings of the study suggest utilization of ANFIS, as a feasible and quick tool, for predicting the bearing capacity of thin-walled spread foundations, though further study is still recommended to enhance the reliability of the proposed model.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2018

Engineering with Computers 2/2018 Go to the issue