Skip to main content
Top

2025 | OriginalPaper | Chapter

Prediction of California Bearing Ratio (CBR) of Soils Using AI-Based Techniques

Authors : Likhith Kudlur Mallikarjunappa, Vaishnavi Bherde, Ramu Baadiga, Umashankar Balunaini

Published in: Proceedings of the Indian Geotechnical Conference 2022 Volume 10

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The California bearing ratio (CBR) is an important input parameter in the design of flexible pavements. CBR is often determined in the laboratory involving a laborious and time-consuming testing procedure. In recent years, artificial intelligence (AI) and machine learning (ML) techniques have gained popularity in geotechnical engineering and can circumvent the laborious process of conducting laboratory testing to determine soil properties. This study presents the application of two AI models, viz., random forest regressor (RFR) and artificial neural network (ANN), to determine CBR based on soil basic and mechanical properties such as gradation, maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), and plastic limit (PL). A large dataset of 652 data points was gathered from an extensive literature review consisting of all the basic and mechanical properties of soil along with the CBR value. The findings from the study reveal that the RFR model gave a high prediction performance with the coefficient of determination (R2) and mean squared error (MSE) equal to 0.92 and 16.2 respectively, whereas the ANN model resulted in the coefficient of correlation (R) and MSE equal to 0.95 and 28, respectively. Furthermore, sensitivity analysis was carried out to evaluate the most influencing soil parameters affecting the CBR. The results show that MDD has the greatest influence, followed by the percentage of fines, whereas PL has the least importance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yildirim B, Gunaydin O (2011) Estimation of California bearing ratio by using soft computing systems. Expert Syst Appl 38(5):6381–6391CrossRef Yildirim B, Gunaydin O (2011) Estimation of California bearing ratio by using soft computing systems. Expert Syst Appl 38(5):6381–6391CrossRef
2.
go back to reference Congress IR (2018) IRC: 37-guidelines for the design of flexible pavements (Fourth Revision). In: Indian roads congress, New Delhi Congress IR (2018) IRC: 37-guidelines for the design of flexible pavements (Fourth Revision). In: Indian roads congress, New Delhi
3.
go back to reference El-Badawy SM, Bayomy FM, Santi M, Clawson CW (2011) Comparison of Idaho pavement design procedure with AASHTO 1993 and MEPDG methods. In: T DI Congress 2011 integrated transport and development for a better tomorrow – Proceedings of the 1st Congress Transportation and Development Institute. ASCE, vol 41167, no. October, pp 586–595 El-Badawy SM, Bayomy FM, Santi M, Clawson CW (2011) Comparison of Idaho pavement design procedure with AASHTO 1993 and MEPDG methods. In: T DI Congress 2011 integrated transport and development for a better tomorrow – Proceedings of the 1st Congress Transportation and Development Institute. ASCE, vol 41167, no. October, pp 586–595
4.
go back to reference Taskiran T (2010) Prediction of California bearing ratio (CBR) of fine-grained soils by AI methods. Adv Eng Softw 41(6):886–892CrossRef Taskiran T (2010) Prediction of California bearing ratio (CBR) of fine-grained soils by AI methods. Adv Eng Softw 41(6):886–892CrossRef
5.
go back to reference Ikeagwuani CC (2021) Estimation of modified expansive soil CBR with multivariate adaptive regression splines, random forest and gradient boosting machine. Innov Infrastruct Solut 6(4) Ikeagwuani CC (2021) Estimation of modified expansive soil CBR with multivariate adaptive regression splines, random forest and gradient boosting machine. Innov Infrastruct Solut 6(4)
6.
go back to reference New O, Pavement R (2003) Guide for mechanistic-empirical design appendix ll: punchouts in continuously reinforced, pp 1–412 New O, Pavement R (2003) Guide for mechanistic-empirical design appendix ll: punchouts in continuously reinforced, pp 1–412
7.
go back to reference Alam SK, Mondal A, Shiuly A (2020) Prediction of CBR value of fine-grained soils of bengal basin by genetic expression programming, artificial neural network and Krigging method. J Geol Soc India 95(2):190–196CrossRef Alam SK, Mondal A, Shiuly A (2020) Prediction of CBR value of fine-grained soils of bengal basin by genetic expression programming, artificial neural network and Krigging method. J Geol Soc India 95(2):190–196CrossRef
8.
go back to reference Sreelekshmypillai G, Vinod P (2019) Prediction of CBR value of fine-grained soils at any rational compactive effort. Int J Geotech Eng 13(6):560–565CrossRef Sreelekshmypillai G, Vinod P (2019) Prediction of CBR value of fine-grained soils at any rational compactive effort. Int J Geotech Eng 13(6):560–565CrossRef
9.
go back to reference Selçuk L, Seker V (2019) Predicting California bearing ratio of foundation soil using ultrasonic pulse velocity. Proc Inst Civ Eng Geotech Eng 172(4):320–330CrossRef Selçuk L, Seker V (2019) Predicting California bearing ratio of foundation soil using ultrasonic pulse velocity. Proc Inst Civ Eng Geotech Eng 172(4):320–330CrossRef
10.
go back to reference Zumrawi M (2012) Prediction of CBR from index properties of cohesive soils. Geotech Geol Eng 2(6):561–565 Zumrawi M (2012) Prediction of CBR from index properties of cohesive soils. Geotech Geol Eng 2(6):561–565
11.
go back to reference Rakaraddi PG, Gomarsi V (2015) Establishing relationship between CBR with different soil properties. Int J Res Eng Technol 04(02):182–188CrossRef Rakaraddi PG, Gomarsi V (2015) Establishing relationship between CBR with different soil properties. Int J Res Eng Technol 04(02):182–188CrossRef
12.
go back to reference Suman S, Mahamaya M, Das SK (2016) Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. Int J Geosynth Gr Eng 2(2):1–11 Suman S, Mahamaya M, Das SK (2016) Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. Int J Geosynth Gr Eng 2(2):1–11
13.
go back to reference On S, Procurement E, Aik Terhad T, Tainia JA, Ehsan SD (2007) Borang Pengesahan status tesis. Program 16 On S, Procurement E, Aik Terhad T, Tainia JA, Ehsan SD (2007) Borang Pengesahan status tesis. Program 16
14.
go back to reference Raja MNA, Shukla SK, Khan MUA, An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil. Int J Pavement Eng 1–17 Raja MNA, Shukla SK, Khan MUA, An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil. Int J Pavement Eng 1–17
15.
go back to reference Zumrawi M (2012) Prediction of CBR from index properties of cohesive soils. Adv Civ Eng Build Mater 561–565 Zumrawi M (2012) Prediction of CBR from index properties of cohesive soils. Adv Civ Eng Build Mater 561–565
16.
go back to reference Johari A, Hooshmand Nejad A (2015) Prediction of soil-water characteristic curve using gene expression programming. Iran J Sci Technol - Trans Civ Eng 39(C1):143–165 Johari A, Hooshmand Nejad A (2015) Prediction of soil-water characteristic curve using gene expression programming. Iran J Sci Technol - Trans Civ Eng 39(C1):143–165
17.
go back to reference Katte VY, Mfoyet SM, Manefouet B, Wouatong ASL, Bezeng LA (2019) Correlation of California Bearing Ratio (CBR) value with soil properties of road subgrade soil. Geotech Geol Eng 37(1):217–234 Katte VY, Mfoyet SM, Manefouet B, Wouatong ASL, Bezeng LA (2019) Correlation of California Bearing Ratio (CBR) value with soil properties of road subgrade soil. Geotech Geol Eng 37(1):217–234
18.
go back to reference González Farias I, Araujo W, Ruiz G (2018) Prediction of California bearing ratio from index properties of soils using parametric and non-parametric models. Geotech Geol Eng 36(6):3485–3498CrossRef González Farias I, Araujo W, Ruiz G (2018) Prediction of California bearing ratio from index properties of soils using parametric and non-parametric models. Geotech Geol Eng 36(6):3485–3498CrossRef
19.
go back to reference Zumrawi M (2012) Prediction of CBR from index properties of cohesive soils. Advances in civil engineering building materials - selected peer revised paper. from 2012 2nd international conference on civil and building materials CEBM 2012, vol 22, no Ii, pp 561–565 Zumrawi M (2012) Prediction of CBR from index properties of cohesive soils. Advances in civil engineering building materials - selected peer revised paper. from 2012 2nd international conference on civil and building materials CEBM 2012, vol 22, no Ii, pp 561–565
20.
go back to reference Gratchev I, Pitawala S, Gurung N, Monteiro E (2018) A chart to estimate CBR of plastic soils. Aust Geomech J 53(1):1–5 Gratchev I, Pitawala S, Gurung N, Monteiro E (2018) A chart to estimate CBR of plastic soils. Aust Geomech J 53(1):1–5
21.
go back to reference Ambrose P, Rimoy S (2021) Prediction of four-days Soaked California bearing ratio (CBR) values from soil index properties. Tanzania J Eng Technol 40(1):28–38CrossRef Ambrose P, Rimoy S (2021) Prediction of four-days Soaked California bearing ratio (CBR) values from soil index properties. Tanzania J Eng Technol 40(1):28–38CrossRef
22.
go back to reference Bello AA (2012) Regression analysis between properties of subgrade lateritic soil. Leonardo J Sci 11(21):99–108 Bello AA (2012) Regression analysis between properties of subgrade lateritic soil. Leonardo J Sci 11(21):99–108
23.
go back to reference Afolabi OA, Afolayan OD (2018) Strength modelling of soil geotechnical properties from index properties. Jordan J Civ Eng 12(4):619–628 Afolabi OA, Afolayan OD (2018) Strength modelling of soil geotechnical properties from index properties. Jordan J Civ Eng 12(4):619–628
24.
go back to reference Satyanarayana Reddy CNV, Raghava Rao EV (2016) A study on impact of variables on precision of correlation equations of CBR of sandy soils. Int J Earth Sci Eng 9(3):1029–1032 Satyanarayana Reddy CNV, Raghava Rao EV (2016) A study on impact of variables on precision of correlation equations of CBR of sandy soils. Int J Earth Sci Eng 9(3):1029–1032
25.
go back to reference Al-Busultan S, Aswed GK, Almuhanna RRA, Rasheed SE (2020) Application of artificial neural networks in predicting subbase CBR values using soil indices data. IOP Conf Ser Mater Sci Eng 671(1) Al-Busultan S, Aswed GK, Almuhanna RRA, Rasheed SE (2020) Application of artificial neural networks in predicting subbase CBR values using soil indices data. IOP Conf Ser Mater Sci Eng 671(1)
26.
go back to reference Shirur NB, Hiremath SG (2014) Establishing Relationship between Cbr value and physical properties of soil. IOSR J Mech Civ Eng 11(5):26–30CrossRef Shirur NB, Hiremath SG (2014) Establishing Relationship between Cbr value and physical properties of soil. IOSR J Mech Civ Eng 11(5):26–30CrossRef
27.
go back to reference Bardhan A, Gokceoglu C, Burman A, Samui P, Asteris PG (2021) Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Eng Geol 291:106239 Bardhan A, Gokceoglu C, Burman A, Samui P, Asteris PG (2021) Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Eng Geol 291:106239
28.
go back to reference Abdella D, Abebe T, Quezon T (2017) Regression analysis of index properties of soil as strength determinant for California bearing ratio (CBR). Gsj 5(6):1–12 Abdella D, Abebe T, Quezon T (2017) Regression analysis of index properties of soil as strength determinant for California bearing ratio (CBR). Gsj 5(6):1–12
29.
go back to reference Korde M, Yadav PRK (2015) A study of correlation between CBR value and physical properties of some soils. Int J Emerg Technol Adv Eng 5(7):237–239 Korde M, Yadav PRK (2015) A study of correlation between CBR value and physical properties of some soils. Int J Emerg Technol Adv Eng 5(7):237–239
30.
go back to reference Talukdar DK (2014) A study of correlation between California bearing ratio (CBR) value with other properties of soil. Int J Emerg Technol Adv Eng 4(1):559–562 Talukdar DK (2014) A study of correlation between California bearing ratio (CBR) value with other properties of soil. Int J Emerg Technol Adv Eng 4(1):559–562
31.
go back to reference Guo L, Chehata N, Mallet C, Boukir S (2011) Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J Photogramm Remote Sens 66(1):56–66CrossRef Guo L, Chehata N, Mallet C, Boukir S (2011) Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J Photogramm Remote Sens 66(1):56–66CrossRef
32.
go back to reference Jin Z, Shang J, Zhu Q, Ling C, Xie W, Qiang B (2020) RFRSF: employee turnover prediction based on random forests and survival analysis. Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence. Lecture Notes Bioinformatics), vol 12343 LNCS, pp 503–515 Jin Z, Shang J, Zhu Q, Ling C, Xie W, Qiang B (2020) RFRSF: employee turnover prediction based on random forests and survival analysis. Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence. Lecture Notes Bioinformatics), vol 12343 LNCS, pp 503–515
33.
go back to reference Smith GN (1986) Probability and statistics in civil engineering: an introduction. Collins Professional and Technical Books, London Smith GN (1986) Probability and statistics in civil engineering: an introduction. Collins Professional and Technical Books, London
34.
go back to reference Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168MathSciNetCrossRef Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168MathSciNetCrossRef
35.
go back to reference Marquardt DW (1963) An algorithm for the least-squares estimation of nonlinear parameters. J SIAM Appl Math 11(2):431–441MathSciNetCrossRef Marquardt DW (1963) An algorithm for the least-squares estimation of nonlinear parameters. J SIAM Appl Math 11(2):431–441MathSciNetCrossRef
37.
go back to reference Doshi SN, Mesdary MS, Guirguis HR (1983) A statistical study of laboratory CBR for Kuwaiti soils. In: Road engineering association of Asia and Australasia, Conference, 4th, 1983, Jakarta, Indonesia, vol 2, p 11 Doshi SN, Mesdary MS, Guirguis HR (1983) A statistical study of laboratory CBR for Kuwaiti soils. In: Road engineering association of Asia and Australasia, Conference, 4th, 1983, Jakarta, Indonesia, vol 2, p 11
38.
go back to reference Bherde V, Kudlur Mallikarjunappa L, Baadiga R, Balunaini U (2023) Application of machine-learning algorithms for predicting California bearing ratio of soil. J Transp Eng, Part B: Pavements 149(4):04023024 Bherde V, Kudlur Mallikarjunappa L, Baadiga R, Balunaini U (2023) Application of machine-learning algorithms for predicting California bearing ratio of soil. J Transp Eng, Part B: Pavements 149(4):04023024
39.
go back to reference Bherde V, Koushik PMV, Balunaini U (2024) Application of ensemble-based methods for prediction of undrained shear strength of soft sensitive clays. In Geo-Congress 2024, pp 52–61 Bherde V, Koushik PMV, Balunaini U (2024) Application of ensemble-based methods for prediction of undrained shear strength of soft sensitive clays. In Geo-Congress 2024, pp 52–61
Metadata
Title
Prediction of California Bearing Ratio (CBR) of Soils Using AI-Based Techniques
Authors
Likhith Kudlur Mallikarjunappa
Vaishnavi Bherde
Ramu Baadiga
Umashankar Balunaini
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6172-2_13