Skip to main content
Top
Published in: Journal of Intelligent Manufacturing 2/2016

08-01-2014

Prediction of drill flank wear using ensemble of co-evolutionary particle swarm optimization based-selective neural network ensembles

Authors: Wen-An Yang, Wei Zhou, Wenhe Liao, Yu Guo

Published in: Journal of Intelligent Manufacturing | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flank wear prediction plays an important role in achieving improved productivity and better quality of the product. This study presents an effective co-evolutionary particle swarm optimization-based selective neural network ensembles (E-CPSOSEN) enabled tool wear prediction model for flank wear prediction in drilling operations. The E-CPSOSEN algorithm utilized two populations of particle swarm optimizations (PSOs) that are co-evolved simultaneously, one discrete particle swarm optimizations for evolving the binary selection vector, and the other continuous particle swarm optimizations for evolving the real weight vector. The two PSOs interact with each other through the fitness evaluation. The E-CPSOSEN algorithm is first tested on four benchmark problems taken from the literature. Upon achieving good results for test cases, the E-CPSOSEN enabled tool wear prediction model was employed to three illustrative case studies of flank wear prediction in drilling operations. Significant improvement is also obtained in comparison to the results already reported in literatures, which further reveals that the E-CPSOSEN enabled tool wear prediction model has more wonderful prediction performance than conventional single ANN-based models in predicting the flank wear in drilling operations. Moreover, an investigation was also conducted to identity the effects of the major parameters of the E-CPSOSEN algorithm upon its prediction performance. From the given results, the proposed enabled tool wear prediction model may be a promising tool for the accurate and automatic prediction of flank wear in drilling operations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43(7), 707–720.CrossRef Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43(7), 707–720.CrossRef
go back to reference Abu-Mahfouz, I. (2005). Drill flank wear estimation using supervised vector quantization neural networks. Neural Computing and Applications, 14(3), 167–175.CrossRef Abu-Mahfouz, I. (2005). Drill flank wear estimation using supervised vector quantization neural networks. Neural Computing and Applications, 14(3), 167–175.CrossRef
go back to reference Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23(2), 539–546.CrossRef Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23(2), 539–546.CrossRef
go back to reference Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
go back to reference Brezak, D., Majetic, D., Udiljak, T., & Kasac, J. (2012). Tool wear estimation using an analytic fuzzy classifier and support vector machines. Journal of Intelligent Manufacturing, 23(3), 797–809.CrossRef Brezak, D., Majetic, D., Udiljak, T., & Kasac, J. (2012). Tool wear estimation using an analytic fuzzy classifier and support vector machines. Journal of Intelligent Manufacturing, 23(3), 797–809.CrossRef
go back to reference Bustillo, A., & Correa, M. (2012). Using artificial intelligence to predict surface roughness in deep drilling of steel components. Journal of Intelligent Manufacturing, 23(5), 1893–1902.CrossRef Bustillo, A., & Correa, M. (2012). Using artificial intelligence to predict surface roughness in deep drilling of steel components. Journal of Intelligent Manufacturing, 23(5), 1893–1902.CrossRef
go back to reference Çaydaş, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23(3), 639–650.CrossRef Çaydaş, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23(3), 639–650.CrossRef
go back to reference Choudhury, S. K., & Raju, G. (2000). Investigation into crater wear in drilling. International Journal of Machine Tools and Manufacture, 40(6), 887–898.CrossRef Choudhury, S. K., & Raju, G. (2000). Investigation into crater wear in drilling. International Journal of Machine Tools and Manufacture, 40(6), 887–898.CrossRef
go back to reference Desai, C. K., & Shaikh, D. A. A. (2006). Drill wear monitoring using artificial neural network with differential evolution learning. In: IEEE International Conference on Industrial Technology (pp. 2019–2022). Mumbai, India: Renaissance Mumbai Hotel and Convention Centre. Desai, C. K., & Shaikh, D. A. A. (2006). Drill wear monitoring using artificial neural network with differential evolution learning. In: IEEE International Conference on Industrial Technology (pp. 2019–2022). Mumbai, India: Renaissance Mumbai Hotel and Convention Centre.
go back to reference Ertunc, H. M., & Loparo, K. A. (2001). A decesion fusion algorithm for tool wear condition monitoring in drilling. International Journal of Machine Tools and Manufacture, 41(9), 1347–1362.CrossRef Ertunc, H. M., & Loparo, K. A. (2001). A decesion fusion algorithm for tool wear condition monitoring in drilling. International Journal of Machine Tools and Manufacture, 41(9), 1347–1362.CrossRef
go back to reference Ertunc, H. M., Loparo, K. A., & Ocak, H. (2001). Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs). International Journal of Machine Tools and Manufacture, 41(9), 1363–1384.CrossRef Ertunc, H. M., Loparo, K. A., & Ocak, H. (2001). Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs). International Journal of Machine Tools and Manufacture, 41(9), 1363–1384.CrossRef
go back to reference Ertunc, H. M., & Oysu, C. (2004). Drill wear monitoring using cutting force signal. Mechatronics, 14(5), 533–548.CrossRef Ertunc, H. M., & Oysu, C. (2004). Drill wear monitoring using cutting force signal. Mechatronics, 14(5), 533–548.CrossRef
go back to reference Gajate, A., Haber, R., Toro, R., Vega, P., & Bustillo, A. (2012). Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process. Journal of Intelligent Manufacturing, 23(3), 869–882.CrossRef Gajate, A., Haber, R., Toro, R., Vega, P., & Bustillo, A. (2012). Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process. Journal of Intelligent Manufacturing, 23(3), 869–882.CrossRef
go back to reference Garg, S., Pal, S. K., & Chakraborty, D. (2007). Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear. Neural Computing and Applications, 16(4–5), 407–417.CrossRef Garg, S., Pal, S. K., & Chakraborty, D. (2007). Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear. Neural Computing and Applications, 16(4–5), 407–417.CrossRef
go back to reference Garg, S., Patra, K., Pal, S. K., & Chakraborty, D. (2008). Effect of different basis functions on a radial basis function network in prediction of drill flank wear from motor current signals. Soft Computing, 12(8), 777–787.CrossRef Garg, S., Patra, K., Pal, S. K., & Chakraborty, D. (2008). Effect of different basis functions on a radial basis function network in prediction of drill flank wear from motor current signals. Soft Computing, 12(8), 777–787.CrossRef
go back to reference Garg, S., Patra, K., Khetrapal, V., Pal, S. K., & Chakraborty, D. (2010). Genetically evolved radial basis function network based prediction of drill flank wear. Engineering Applications of Artificial Intelligence, 23(7), 1112–1120.CrossRef Garg, S., Patra, K., Khetrapal, V., Pal, S. K., & Chakraborty, D. (2010). Genetically evolved radial basis function network based prediction of drill flank wear. Engineering Applications of Artificial Intelligence, 23(7), 1112–1120.CrossRef
go back to reference Grzenda, M., Bustillo, A., & Zawistowski, P. (2012). A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling. Journal of Intelligent Manufacturing, 23(5), 1733–1743.CrossRef Grzenda, M., Bustillo, A., & Zawistowski, P. (2012). A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling. Journal of Intelligent Manufacturing, 23(5), 1733–1743.CrossRef
go back to reference Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transaction on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.CrossRef Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transaction on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.CrossRef
go back to reference Hansen, J. V. (2000). Combining predictors: Meta machine learning methods and bias/variance and ambiguity decompositions. Ph.D. Dissertation of University of Aarhus, Denmark. Hansen, J. V. (2000). Combining predictors: Meta machine learning methods and bias/variance and ambiguity decompositions. Ph.D. Dissertation of University of Aarhus, Denmark.
go back to reference Hornik, K. M., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(2), 359–366.CrossRef Hornik, K. M., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(2), 359–366.CrossRef
go back to reference Huang, G., Chen, Y., & Babri, H. A. (2000). Classification ability of single hidden layer feed forward neural networks. IEEE Transaction on Neural Networks, 11(3), 799–801.CrossRef Huang, G., Chen, Y., & Babri, H. A. (2000). Classification ability of single hidden layer feed forward neural networks. IEEE Transaction on Neural Networks, 11(3), 799–801.CrossRef
go back to reference Judd, J. S. (1987). Learning in networks is hard. In: Proceedings of the First International Conference on Neural Networks (pp. 685–692). San Diego, California, New York: IEEE. Judd, J. S. (1987). Learning in networks is hard. In: Proceedings of the First International Conference on Neural Networks (pp. 685–692). San Diego, California, New York: IEEE.
go back to reference Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks (pp. 1942–1948), November/December 27, Perth, Australia, IV. Piscataway, NJ: IEEE Service Centre. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks (pp. 1942–1948), November/December 27, Perth, Australia, IV. Piscataway, NJ: IEEE Service Centre.
go back to reference Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm optimization. In: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation (pp. 4104–4108). Piscataway, NJ: IEEE Press. Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm optimization. In: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation (pp. 4104–4108). Piscataway, NJ: IEEE Press.
go back to reference Kosmol, J., Czech, M., Klarecki, K., & Sliwka, J. (1999). The optimization of drills for machining of austenitic steel. Journal of Materials Processing Technology, 80–90(19), 117–122.CrossRef Kosmol, J., Czech, M., Klarecki, K., & Sliwka, J. (1999). The optimization of drills for machining of austenitic steel. Journal of Materials Processing Technology, 80–90(19), 117–122.CrossRef
go back to reference Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing. Journal of Intelligent Manufacturing, 24(4), 755–762.CrossRef Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing. Journal of Intelligent Manufacturing, 24(4), 755–762.CrossRef
go back to reference Krishnan, S. M., & Irusa, G. R. (2012). Prediction and analysis of multiple quality characteristics in drilling under minimum quantity. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(6), 1061–1070.CrossRef Krishnan, S. M., & Irusa, G. R. (2012). Prediction and analysis of multiple quality characteristics in drilling under minimum quantity. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(6), 1061–1070.CrossRef
go back to reference Krogh, A., & Vedelsby, J. (1995). Neural network ensembles cross validation, and active learning. In: Advances in neural information processing systems (Vol. 7, pp. 231–238). Denver, CO, Cambridge, MA: MIT Press. Krogh, A., & Vedelsby, J. (1995). Neural network ensembles cross validation, and active learning. In: Advances in neural information processing systems (Vol. 7, pp. 231–238). Denver, CO, Cambridge, MA: MIT Press.
go back to reference Lee, B. Y., Liu, H. S., & Tarng, Y. S. (1998). Modelling and optimization of drilling process. Journal of Materials Processing Technology, 74(1–3), 149–157.CrossRef Lee, B. Y., Liu, H. S., & Tarng, Y. S. (1998). Modelling and optimization of drilling process. Journal of Materials Processing Technology, 74(1–3), 149–157.CrossRef
go back to reference Li, X. L., & Tso, S. K. (1999). Drill wear monitoring based on current signals. Wear, 231(2), 172–178.CrossRef Li, X. L., & Tso, S. K. (1999). Drill wear monitoring based on current signals. Wear, 231(2), 172–178.CrossRef
go back to reference Li, P. G., & Wu, S. M. (1998). Monitoring of drill wear states by a Fuzzy pattern recognition technique. Journal of Engineering for Industry, 110(3), 352–359. Li, P. G., & Wu, S. M. (1998). Monitoring of drill wear states by a Fuzzy pattern recognition technique. Journal of Engineering for Industry, 110(3), 352–359.
go back to reference Lin, S. C., & Ting, C. J. (1995). Tool wear monitoring in drilling using force signals. International Journal of Machine Tools and Manufacture, 180(1–2), 53–60. Lin, S. C., & Ting, C. J. (1995). Tool wear monitoring in drilling using force signals. International Journal of Machine Tools and Manufacture, 180(1–2), 53–60.
go back to reference Lin, S. C., & Ting, C. J. (1996). Drill wear monitoring using neural network. International Journal of Machine Tools and Manufacture, 36(4), 465–475.CrossRef Lin, S. C., & Ting, C. J. (1996). Drill wear monitoring using neural network. International Journal of Machine Tools and Manufacture, 36(4), 465–475.CrossRef
go back to reference Lo, S.-P., & Lin, Y.-Y. (2004). Application of abductive polynomial network and grey theory to drill flank wear. Applied Artificial Intelligence: An International Journal, 18(8), 713–733.CrossRef Lo, S.-P., & Lin, Y.-Y. (2004). Application of abductive polynomial network and grey theory to drill flank wear. Applied Artificial Intelligence: An International Journal, 18(8), 713–733.CrossRef
go back to reference Pal, S., Heyns, P. S., Freyer, B. H., Theron, N. J., & Pal, S. K. (2011). Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. J ournal of Intelligent Manufacturing, 22(4), 491–504.CrossRef Pal, S., Heyns, P. S., Freyer, B. H., Theron, N. J., & Pal, S. K. (2011). Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. J ournal of Intelligent Manufacturing, 22(4), 491–504.CrossRef
go back to reference Panda, S. S., Chakraborty, D., & Pal, S. K. (2007). Monitoring of drill flank wear using fuzzy back-propagation neural network. The International Journal of Advanced Manufacturing Technology, 34(3–4), 227–235.CrossRef Panda, S. S., Chakraborty, D., & Pal, S. K. (2007). Monitoring of drill flank wear using fuzzy back-propagation neural network. The International Journal of Advanced Manufacturing Technology, 34(3–4), 227–235.CrossRef
go back to reference Panda, S. S., Chakraborty, D., & Pal, S. K. (2008a). Flank wear prediction in drilling using back propagation neural network and radial basis function network. Applied Soft Computing, 8(2), 858–871.CrossRef Panda, S. S., Chakraborty, D., & Pal, S. K. (2008a). Flank wear prediction in drilling using back propagation neural network and radial basis function network. Applied Soft Computing, 8(2), 858–871.CrossRef
go back to reference Panda, S. S., Chakraborty, D., & Pal, S. K. (2008b). Drill wear prediction using different neural network architectures. International Journal of Knowledge-based and Intelligent Engineering Systems, 12(5–6), 327–338. Panda, S. S., Chakraborty, D., & Pal, S. K. (2008b). Drill wear prediction using different neural network architectures. International Journal of Knowledge-based and Intelligent Engineering Systems, 12(5–6), 327–338.
go back to reference Panda, S. S., Singh, A. K., Chakraborty, D., & Pal, S. K. (2006). Drill wear monitoring using back propagation neural network. Journal of Materials Processing Technology, 172(2), 283–290.CrossRef Panda, S. S., Singh, A. K., Chakraborty, D., & Pal, S. K. (2006). Drill wear monitoring using back propagation neural network. Journal of Materials Processing Technology, 172(2), 283–290.CrossRef
go back to reference Park, K.-H., Beal, A., Kim, D., Kwon, P., & Lantrip, J. (2011). Tool wear in drilling of composite/titanium stacks using carbide and polycrystalline diamond tools. Wear, 271(11–12), 2826–2835.CrossRef Park, K.-H., Beal, A., Kim, D., Kwon, P., & Lantrip, J. (2011). Tool wear in drilling of composite/titanium stacks using carbide and polycrystalline diamond tools. Wear, 271(11–12), 2826–2835.CrossRef
go back to reference Patra, K., Pal, S. K., & Bhattacharyya, K. (2007a). Artificial neural network based prediction of drill flank wear from motor current signals. Applied Soft Computing, 7(3), 929–935.CrossRef Patra, K., Pal, S. K., & Bhattacharyya, K. (2007a). Artificial neural network based prediction of drill flank wear from motor current signals. Applied Soft Computing, 7(3), 929–935.CrossRef
go back to reference Patra, K., Pal, S. K., & Bhattacharyya, K. (2007b). Application of wavelet packet analysis in drill wear monitoring. Machining Science and Technology, 11(3), 413–432. Patra, K., Pal, S. K., & Bhattacharyya, K. (2007b). Application of wavelet packet analysis in drill wear monitoring. Machining Science and Technology, 11(3), 413–432.
go back to reference Patra, K., Pal, S. K., & Bhattacharyy, K. (2010). Fuzzy radial basis function (FRBF) network based tool condition monitoring system using vibration signals. Machining Science and Technology: An International Journal, 14(2), 280–300.CrossRef Patra, K., Pal, S. K., & Bhattacharyy, K. (2010). Fuzzy radial basis function (FRBF) network based tool condition monitoring system using vibration signals. Machining Science and Technology: An International Journal, 14(2), 280–300.CrossRef
go back to reference Quintana, G., Garcia-Romeu, M. L., & Ciurana, J. (2011). Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22(4), 607–617.CrossRef Quintana, G., Garcia-Romeu, M. L., & Ciurana, J. (2011). Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22(4), 607–617.CrossRef
go back to reference Raghavendra, N., Koranne, R., Patra, K., & Pal, S. K. (2009). A neuro ant colony optimized model for drill flank wear prediction. International Journal for Manufacturing Science and Production, 10(3–4), 169–184. Raghavendra, N., Koranne, R., Patra, K., & Pal, S. K. (2009). A neuro ant colony optimized model for drill flank wear prediction. International Journal for Manufacturing Science and Production, 10(3–4), 169–184.
go back to reference Ridgeway, G., Madigan, D., & Richardson, T. (1999). Boosting methodology for regression problems. In: Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics (pp. 152–161), Fort Lauderdale, FL, San Mateo, CA: Morgan Kaufmann. Ridgeway, G., Madigan, D., & Richardson, T. (1999). Boosting methodology for regression problems. In: Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics (pp. 152–161), Fort Lauderdale, FL, San Mateo, CA: Morgan Kaufmann.
go back to reference Sanjay, C., Neema, M. L., & Chin, C. W. (2005). Modeling of tool wear in drilling by statistical analysis and artificial neural network. Journal of Materials Processing Technology, 170(3), 494–500.CrossRef Sanjay, C., Neema, M. L., & Chin, C. W. (2005). Modeling of tool wear in drilling by statistical analysis and artificial neural network. Journal of Materials Processing Technology, 170(3), 494–500.CrossRef
go back to reference Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227. Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.
go back to reference Singh, A. K., Panda, S. S., Pal, S. K., & Chakraborty, D. (2006). Predicting drill wear using an artificial neural network. The International Journal of Advanced Manufacturing Technology, 28(5–6), 456–462.CrossRef Singh, A. K., Panda, S. S., Pal, S. K., & Chakraborty, D. (2006). Predicting drill wear using an artificial neural network. The International Journal of Advanced Manufacturing Technology, 28(5–6), 456–462.CrossRef
go back to reference Sonar, D. K., Dixit, U. S., & Ojha, D. K. (2005). The application of a radial basis function neural network for predicting the surface roughness in a turning process. The International Journal of Advanced Manufacturing Technology, 27(7–8), 661–666. Sonar, D. K., Dixit, U. S., & Ojha, D. K. (2005). The application of a radial basis function neural network for predicting the surface roughness in a turning process. The International Journal of Advanced Manufacturing Technology, 27(7–8), 661–666.
go back to reference Tsao, C. C. (2002). Prediction of flank wear of different coated drills for JIS SUS 304 stainless steel using neural network. Journal of Materials Processing Technology, 123(3), 354–360.CrossRef Tsao, C. C. (2002). Prediction of flank wear of different coated drills for JIS SUS 304 stainless steel using neural network. Journal of Materials Processing Technology, 123(3), 354–360.CrossRef
go back to reference Wang, G. F., & Cui, Y. H. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24(6), 1085–1094.CrossRef Wang, G. F., & Cui, Y. H. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24(6), 1085–1094.CrossRef
go back to reference Wang, X. Y., Wang, W., Huang, Y., Nguyen, N., & Krishnakumar, K. (2008). Design of neural network-based estimator for tool wear modeling in hard turning. Journal of Intelligent Manufacturing, 19(4), 383–396. Wang, X. Y., Wang, W., Huang, Y., Nguyen, N., & Krishnakumar, K. (2008). Design of neural network-based estimator for tool wear modeling in hard turning. Journal of Intelligent Manufacturing, 19(4), 383–396.
go back to reference Weston, J. A. E., Stitson, M. O., Gammerman, A., Vovk, V., & Vapnik, V. (1996). Experiments with support vector machines. London: Technical Report: CSD-TR-96-19, Royal Holloway University of London. Weston, J. A. E., Stitson, M. O., Gammerman, A., Vovk, V., & Vapnik, V. (1996). Experiments with support vector machines. London: Technical Report: CSD-TR-96-19, Royal Holloway University of London.
go back to reference Wong, Y. S., Nee, A. Y. C., Li, X. Q., & Reisdorf, C. (1997). Tool condition monitoring using laser scatter pattern. Journal of Materials Processing Technology, 63(1–3), 205–210.CrossRef Wong, Y. S., Nee, A. Y. C., Li, X. Q., & Reisdorf, C. (1997). Tool condition monitoring using laser scatter pattern. Journal of Materials Processing Technology, 63(1–3), 205–210.CrossRef
go back to reference Yang, W.-A., Guo, Y., & Liao, W. H. (2010). Optimization of multi-pass face milling using a fuzzy particle swarm optimization algorithm. The International Journal of Advanced Manufacturing Technology, 54(1–4), 45–57. Yang, W.-A., Guo, Y., & Liao, W. H. (2010). Optimization of multi-pass face milling using a fuzzy particle swarm optimization algorithm. The International Journal of Advanced Manufacturing Technology, 54(1–4), 45–57.
go back to reference Yang, W.-A., Guo, Y., & Liao, W. H. (2011). Multi-objective optimization of multi-pass face milling using particle swarm intelligence. The International Journal of Advanced Manufacturing Technology, 56(5–8), 429–443.CrossRef Yang, W.-A., Guo, Y., & Liao, W. H. (2011). Multi-objective optimization of multi-pass face milling using particle swarm intelligence. The International Journal of Advanced Manufacturing Technology, 56(5–8), 429–443.CrossRef
go back to reference Yang, X., Kumehara, H., & Zhang, W. (2009). Back propagation wavelet neural network based prediction of drill wear from thrust force. Computer and information Science, 2(3), 75–86.CrossRef Yang, X., Kumehara, H., & Zhang, W. (2009). Back propagation wavelet neural network based prediction of drill wear from thrust force. Computer and information Science, 2(3), 75–86.CrossRef
go back to reference Yildiz, A. R. (2009a). A novel hybrid immune algorithm for global optimization in design and manufacturing. Robotics and Computer-Integrated Manufacturing, 25(2), 261–270.CrossRef Yildiz, A. R. (2009a). A novel hybrid immune algorithm for global optimization in design and manufacturing. Robotics and Computer-Integrated Manufacturing, 25(2), 261–270.CrossRef
go back to reference Yildiz, A. R. (2009b). An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. Journal of Materials Processing Technology, 50(4), 224–228. Yildiz, A. R. (2009b). An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. Journal of Materials Processing Technology, 50(4), 224–228.
go back to reference Yildiz, A. R. (2012). A comparative study of population-based optimization algorithms for turning operations. Information Sciences, 210(25), 81–88.CrossRef Yildiz, A. R. (2012). A comparative study of population-based optimization algorithms for turning operations. Information Sciences, 210(25), 81–88.CrossRef
go back to reference Yildiz, A. R. (2013a). Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Information Sciences, 220(20), 399–407.CrossRef Yildiz, A. R. (2013a). Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Information Sciences, 220(20), 399–407.CrossRef
go back to reference Yildiz, A. R. (2013b). A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Applied Soft Computing, 13(3), 1561–1566.CrossRef Yildiz, A. R. (2013b). A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Applied Soft Computing, 13(3), 1561–1566.CrossRef
go back to reference Yildiz, A. R. (2013c). Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Applied Soft Computing, 13(3), 1433–1439.CrossRef Yildiz, A. R. (2013c). Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Applied Soft Computing, 13(3), 1433–1439.CrossRef
go back to reference Yildiz, A. R. (2013d). Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. International Journal of Advanced Manufacturing Technology, 64(1–4), 55–61.CrossRef Yildiz, A. R. (2013d). Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. International Journal of Advanced Manufacturing Technology, 64(1–4), 55–61.CrossRef
go back to reference Zhou, Z. H., Wu, J. X., & Tang, W. (2002). Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1–2), 239–263.CrossRef Zhou, Z. H., Wu, J. X., & Tang, W. (2002). Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1–2), 239–263.CrossRef
go back to reference Zuperl, U., Cus, F., & Kiker, E. (2009). Adaptive network based inference system for estimation of flank wear in end-milling. Journal of Materials Processing Technology, 209(3), 1504–1511.CrossRef Zuperl, U., Cus, F., & Kiker, E. (2009). Adaptive network based inference system for estimation of flank wear in end-milling. Journal of Materials Processing Technology, 209(3), 1504–1511.CrossRef
Metadata
Title
Prediction of drill flank wear using ensemble of co-evolutionary particle swarm optimization based-selective neural network ensembles
Authors
Wen-An Yang
Wei Zhou
Wenhe Liao
Yu Guo
Publication date
08-01-2014
Publisher
Springer US
Published in
Journal of Intelligent Manufacturing / Issue 2/2016
Print ISSN: 0956-5515
Electronic ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-013-0867-2

Other articles of this Issue 2/2016

Journal of Intelligent Manufacturing 2/2016 Go to the issue

Premium Partners