Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Prediction of Effective Properties of Composites Based on Ferroelectric Ceramics

Authors : Hamideh Khanbareh, Vitaly Yu. Topolov, Christopher R. Bowen

Published in: Piezo-Particulate Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The important step at the study of the piezo-particulate composites is concerned with the prediction of their effective properties. Hereby a number of models have been put forward at modelling and interpretation of the properties. Examples of the effective piezoelectric properties and related parameters of 0–3, 1–3 and 2–2 ferroelectric ceramic/polymer composites, and 0–3-type composites with two kinds of the ceramic inclusions are discussed to demonstrate the influence of microgeometric characteristics, components and other factors on the electromechanical coupling and piezoelectric performance of the composites. The effective pyroelectric and dielectric properties of the ceramic-based composites are considered to a lesser degree. The microgeometry of the piezo-active composite plays a key role in determining its piezoelectric sensitivity, and changes in the microgeometry can lead to appreciable changes in the piezoelectric sensitivity and related parameters. Main examples of the piezoelectric sensitivity are concerned with composites that are based on either the PZT-type or PbTiO3-type ceramics. Calculated parameters are compared to the known experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)CrossRef R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)CrossRef
2.
go back to reference K.A. Klicker, J.V. Biggers, R.E. Newnham, Composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5–9 (1981)CrossRef K.A. Klicker, J.V. Biggers, R.E. Newnham, Composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5–9 (1981)CrossRef
3.
go back to reference H.L.W. Chan, J. Unsworth, Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 434–441 (1989)CrossRef H.L.W. Chan, J. Unsworth, Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 434–441 (1989)CrossRef
4.
go back to reference H.L.W. Chan, M.C. Cheung, C.L. Choy, Study on BaTiO3/P(VDF–TrFE) 0–3 composites. Ferroelectrics 224, 113–120 (1999)CrossRef H.L.W. Chan, M.C. Cheung, C.L. Choy, Study on BaTiO3/P(VDF–TrFE) 0–3 composites. Ferroelectrics 224, 113–120 (1999)CrossRef
5.
go back to reference E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)CrossRef E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)CrossRef
6.
go back to reference S.A. Wilson, G.M. Maistros, R.W. Whatmore, Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D Appl. Phys. 38, 175–182 (2005)CrossRef S.A. Wilson, G.M. Maistros, R.W. Whatmore, Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D Appl. Phys. 38, 175–182 (2005)CrossRef
7.
go back to reference F. Wang, C. He, Y. Tang, Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105, 273–277 (2007)CrossRef F. Wang, C. He, Y. Tang, Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105, 273–277 (2007)CrossRef
8.
go back to reference J.B. Ngoma, J.Y. Cavaille, J. Paletto, J. Perez, Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 109, 205–210 (1990)CrossRef J.B. Ngoma, J.Y. Cavaille, J. Paletto, J. Perez, Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 109, 205–210 (1990)CrossRef
9.
go back to reference H.L.W. Chan, Y. Chen, C.L. Choy, Thermal hysteresis in the permittivity and polarization of lead zirconate titanate/vinylidenefloride-trifluoroethylene 0–3 composites. IEEE Trans. Dielectr. Electr. Insul. 3, 800–805 (1996)CrossRef H.L.W. Chan, Y. Chen, C.L. Choy, Thermal hysteresis in the permittivity and polarization of lead zirconate titanate/vinylidenefloride-trifluoroethylene 0–3 composites. IEEE Trans. Dielectr. Electr. Insul. 3, 800–805 (1996)CrossRef
10.
go back to reference Y. Hirata, T. Numazawa, H. Takada, Effects of aspect ratio of lead zirconate titanate on 1–3 piezoelectric composite properties. Jpn. J. Appl. Phys. Pt 1(36), 6062–6064 (1997)CrossRef Y. Hirata, T. Numazawa, H. Takada, Effects of aspect ratio of lead zirconate titanate on 1–3 piezoelectric composite properties. Jpn. J. Appl. Phys. Pt 1(36), 6062–6064 (1997)CrossRef
11.
go back to reference L. Pardo, J. Mendiola, C. Alemany, Theoretical treatment of ferroelectric composites using Monte Carlo calculations. J. Appl. Phys. 64, 5092–5097 (1988)CrossRef L. Pardo, J. Mendiola, C. Alemany, Theoretical treatment of ferroelectric composites using Monte Carlo calculations. J. Appl. Phys. 64, 5092–5097 (1988)CrossRef
12.
go back to reference A.A. Grekov, S.O. Kramarov, A.A. Kuprienko, Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech. Compos. Mater. 25, 54–61 (1989)CrossRef A.A. Grekov, S.O. Kramarov, A.A. Kuprienko, Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech. Compos. Mater. 25, 54–61 (1989)CrossRef
13.
go back to reference F. Levassort, M. Lethiecq, C. Millar, L. Pourcelot, Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1497–1505 (1998)CrossRef F. Levassort, M. Lethiecq, C. Millar, L. Pourcelot, Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1497–1505 (1998)CrossRef
14.
go back to reference V.M. Levin, M.I. Rakovskaja, W.S. Kreher, The effective thermoelectroelastic properties of microinhomogeneous materials. Int. J. Solids Struct. 36, 2683–2705 (1999)CrossRef V.M. Levin, M.I. Rakovskaja, W.S. Kreher, The effective thermoelectroelastic properties of microinhomogeneous materials. Int. J. Solids Struct. 36, 2683–2705 (1999)CrossRef
15.
go back to reference F. Levassort, V.Yu. Topolov, M. Lethiecq, A comparative study of different methods of evaluating effective electromechanical properties of 0–3 and 1–3 ceramic/polymer composites. J. Phys. D Appl. Phys. 33, 2064–2068 (2000) F. Levassort, V.Yu. Topolov, M. Lethiecq, A comparative study of different methods of evaluating effective electromechanical properties of 0–3 and 1–3 ceramic/polymer composites. J. Phys. D Appl. Phys. 33, 2064–2068 (2000)
16.
go back to reference C.K. Wong, Y.M. Poon, F.G. Shin, Explicit formulas for effective piezoelectric coefficients of ferroelectric 0–3 composites based on effective medium theory. J. Appl. Phys. 93, 487–496 (2003)CrossRef C.K. Wong, Y.M. Poon, F.G. Shin, Explicit formulas for effective piezoelectric coefficients of ferroelectric 0–3 composites based on effective medium theory. J. Appl. Phys. 93, 487–496 (2003)CrossRef
17.
go back to reference N. Fakri, L. Azrar, L. El Bakkali, Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)CrossRef N. Fakri, L. Azrar, L. El Bakkali, Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)CrossRef
18.
go back to reference S.V. Glushanin, V.Yu. Topolov, A.V. Krivoruchko, Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater. Chem. Phys. 97, 357–364 (2006) S.V. Glushanin, V.Yu. Topolov, A.V. Krivoruchko, Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater. Chem. Phys. 97, 357–364 (2006)
19.
go back to reference Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian) Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian)
20.
go back to reference R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J. Appl. Phys. 98, 054102 (2005)CrossRef R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J. Appl. Phys. 98, 054102 (2005)CrossRef
21.
go back to reference R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater. 55, 1093–1108 (2007)CrossRef R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater. 55, 1093–1108 (2007)CrossRef
22.
go back to reference V.Yu. Topolov, P. Bisegna, A.V. Krivoruchko, Features of electromechanical properties of 1–3 composites based on PbTiO3-type ceramics. J. Phys. D Appl. Phys. 41, 035406 (2008) V.Yu. Topolov, P. Bisegna, A.V. Krivoruchko, Features of electromechanical properties of 1–3 composites based on PbTiO3-type ceramics. J. Phys. D Appl. Phys. 41, 035406 (2008)
23.
go back to reference V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009) V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009)
24.
go back to reference V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-Active Composites. Orientation Effects and Anisotropy Factors (Springer, Berlin, Heidelberg, 2014) V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-Active Composites. Orientation Effects and Anisotropy Factors (Springer, Berlin, Heidelberg, 2014)
25.
go back to reference V.Yu. Topolov, C.R. Bowen, P. Bisegna, New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens. Actuators A – Phys. 229, 94–103 (2015) V.Yu. Topolov, C.R. Bowen, P. Bisegna, New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens. Actuators A – Phys. 229, 94–103 (2015)
26.
go back to reference T.R. Gururaja, A. Safari, R.E. Newnham, L.E. Cross, Piezoelectric ceramic/polymer composites for transducer applications, in Electronic Ceramics: Properties, Devices, and Applications, ed. by M. Levinson (Marcel Dekker, New York Basel, 1988), pp. 92–128 T.R. Gururaja, A. Safari, R.E. Newnham, L.E. Cross, Piezoelectric ceramic/polymer composites for transducer applications, in Electronic Ceramics: Properties, Devices, and Applications, ed. by M. Levinson (Marcel Dekker, New York Basel, 1988), pp. 92–128
27.
go back to reference G.M. Garner, N.M. Shorrocks, R.W. Whatmore, M.T. Goosey, P. Seth, F.W. Ainger, 0–3 piezoelectric composites for large area hydrophones. Ferroelectrics 93, 169–176 (1989)CrossRef G.M. Garner, N.M. Shorrocks, R.W. Whatmore, M.T. Goosey, P. Seth, F.W. Ainger, 0–3 piezoelectric composites for large area hydrophones. Ferroelectrics 93, 169–176 (1989)CrossRef
28.
go back to reference A. Safari, E.K. Akdogan, Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331, 153–179 (2006)CrossRef A. Safari, E.K. Akdogan, Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331, 153–179 (2006)CrossRef
29.
go back to reference C.A. Randall, D.V. Miller, J.H. Adair, A.S. Bhalla, Processing of electroceramic—polymer composites using the electrorheological effect. J. Mater. Res. 8, 899–904 (1993)CrossRef C.A. Randall, D.V. Miller, J.H. Adair, A.S. Bhalla, Processing of electroceramic—polymer composites using the electrorheological effect. J. Mater. Res. 8, 899–904 (1993)CrossRef
30.
go back to reference H. Khanbareh, S. van der Zwaag, W. Groen, Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of PT-epoxy composites. Smart Mater. Struct. 23, 105030 (2014)CrossRef H. Khanbareh, S. van der Zwaag, W. Groen, Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of PT-epoxy composites. Smart Mater. Struct. 23, 105030 (2014)CrossRef
31.
go back to reference M.P. Wenger, D.K. Das-Gupta, Mixed connectivity composite material characterization for electroactive sensors. Polym. Eng. Sci. 39, 1176–1188 (1999)CrossRef M.P. Wenger, D.K. Das-Gupta, Mixed connectivity composite material characterization for electroactive sensors. Polym. Eng. Sci. 39, 1176–1188 (1999)CrossRef
32.
go back to reference L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian) L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian)
33.
go back to reference J.H. Huang, W.-S. Kuo, Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)CrossRef J.H. Huang, W.-S. Kuo, Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)CrossRef
34.
go back to reference T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRef T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRef
35.
go back to reference M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. (Lond.), Pt A 443, 265–287 (1993) M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. (Lond.), Pt A 443, 265–287 (1993)
36.
go back to reference M.L. Dunn, M. Taya, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)CrossRef M.L. Dunn, M. Taya, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)CrossRef
37.
go back to reference C. Poizat, M. Sester, Homogénéisation périodique de composites piézoélectriques 0–3: influence de la distribution. Rev. des Compos. et des Matériaux Avancés 11, 65–74 (2001)CrossRef C. Poizat, M. Sester, Homogénéisation périodique de composites piézoélectriques 0–3: influence de la distribution. Rev. des Compos. et des Matériaux Avancés 11, 65–74 (2001)CrossRef
38.
go back to reference J.H. Huang, S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)CrossRef J.H. Huang, S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)CrossRef
39.
go back to reference C.J. Dias, D.K. Das-Gupta, Electroactive polymer-ceramic composites, in Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, July 3–8, 1994, Brisbane, Australia (IEEE, Piscataway (1994), pp. 175–178 C.J. Dias, D.K. Das-Gupta, Electroactive polymer-ceramic composites, in Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, July 3–8, 1994, Brisbane, Australia (IEEE, Piscataway (1994), pp. 175–178
40.
go back to reference D.A. Berlincourt, D.R. Cerran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers, in Physical Acoustics. Principles and Methods, Vol. 1: Methods and Devices, ed. Mason W (Pt A. Academic Press, New York London, 1964), pp. 169–270 D.A. Berlincourt, D.R. Cerran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers, in Physical Acoustics. Principles and Methods, Vol. 1: Methods and Devices, ed. Mason W (Pt A. Academic Press, New York London, 1964), pp. 169–270
41.
go back to reference R.E. Newnham, Nonmechanical properties of composites, in Concise Encyclopedia of Composite Materials, ed. by A. Kelly, R.W. Cahn, M.B. Bever (Elsevier, Oxford, 1994), pp. 214–220 R.E. Newnham, Nonmechanical properties of composites, in Concise Encyclopedia of Composite Materials, ed. by A. Kelly, R.W. Cahn, M.B. Bever (Elsevier, Oxford, 1994), pp. 214–220
42.
go back to reference V.Yu. Topolov, P. Bisegna, Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J. Electroceram. 25, 26–37 (2010) V.Yu. Topolov, P. Bisegna, Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J. Electroceram. 25, 26–37 (2010)
43.
go back to reference V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active composites. Microgeometry – Sensitivity Relations (Springer International Publishing Switzerland, 2018) V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active composites. Microgeometry – Sensitivity Relations (Springer International Publishing Switzerland, 2018)
44.
go back to reference V.Yu. Topolov, S.V. Glushanin, Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J. Phys. D Appl. Phys. 35, 2008–2014 (2002) V.Yu. Topolov, S.V. Glushanin, Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J. Phys. D Appl. Phys. 35, 2008–2014 (2002)
45.
46.
go back to reference L.V. Gibiansky, S. Torquato, On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J. Mech. Phys. Solids 45, 689–708 (1997)CrossRef L.V. Gibiansky, S. Torquato, On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J. Mech. Phys. Solids 45, 689–708 (1997)CrossRef
47.
go back to reference H. Khanbareh, Expanding the functionality of piezo-particulate composites. Dissertation, Delft University of Technology, Delft, 2016 H. Khanbareh, Expanding the functionality of piezo-particulate composites. Dissertation, Delft University of Technology, Delft, 2016
48.
go back to reference C. Dias, D. Das Gupta, Inorganic ceramic polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3, 706–734 (1996)CrossRef C. Dias, D. Das Gupta, Inorganic ceramic polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3, 706–734 (1996)CrossRef
49.
go back to reference V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallogr. Rep. 39, 805–809 (1994) V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallogr. Rep. 39, 805–809 (1994)
50.
go back to reference V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the piezoelectric anisotropy in modified PbTiO3 ceramics. Ferroelectrics 154, 271–276 (1994) V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the piezoelectric anisotropy in modified PbTiO3 ceramics. Ferroelectrics 154, 271–276 (1994)
51.
go back to reference E.I. Bondarenko, V.Yu. Topolov, A.V. Turik, The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectr. Lett. Sect. 13, 13–19 (1991) E.I. Bondarenko, V.Yu. Topolov, A.V. Turik, The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectr. Lett. Sect. 13, 13–19 (1991)
Metadata
Title
Prediction of Effective Properties of Composites Based on Ferroelectric Ceramics
Authors
Hamideh Khanbareh
Vitaly Yu. Topolov
Christopher R. Bowen
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19204-4_5

Premium Partners