Skip to main content
Top

2024 | OriginalPaper | Chapter

Prediction of Employee Turnover in Organizations Using Machine Learning Algorithms: A Decision Making Perspective

Authors : Zeynep Kaya, Gazi Bilal Yildiz

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the significant problem of employee turnover in organizations and how it negatively impacts various aspects such as morale, productivity, and long-term growth strategies. By leveraging machine learning algorithms, the study proposes a prediction system to foresee employee turnover, enabling organizations to take preventive measures. The framework also serves as a decision-support system for determining the most suitable departments for employees, optimizing their working conditions and enhancing overall productivity. The use of regression models and an assignment problem approach provides a robust methodology for predicting turnover rates and maximizing employee retention. The study highlights the importance of data preprocessing and the effectiveness of different machine learning algorithms in this context, offering a practical solution for human resource management.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stoval, M., Bontis, N.: Voluntary turnover: knowledge management – Friend or foe? J. Intellect. Cap. 3(3), 303–322 (2002)CrossRef Stoval, M., Bontis, N.: Voluntary turnover: knowledge management – Friend or foe? J. Intellect. Cap. 3(3), 303–322 (2002)CrossRef
2.
go back to reference Cotton, J.L., Tuttle, J.M.: Employee turnover: a meta-analysis and review with implications for research. Acad. Manag. Rev. 11(1), 55–70 (1986)CrossRef Cotton, J.L., Tuttle, J.M.: Employee turnover: a meta-analysis and review with implications for research. Acad. Manag. Rev. 11(1), 55–70 (1986)CrossRef
3.
go back to reference Finkelstein, L.M., Ryanand, K.M., King, E.B.: What do the young (old) people think of me? Content and accuracy of age-based metastereotypes. Eur. J. Work Organ. Psychol. 22(6), 633–657 (2013) Finkelstein, L.M., Ryanand, K.M., King, E.B.: What do the young (old) people think of me? Content and accuracy of age-based metastereotypes. Eur. J. Work Organ. Psychol. 22(6), 633–657 (2013)
4.
go back to reference Peterson, S.L.: Toward a theoretical model of employee turnover: a human resource development perspective. Hum. Resour. Dev. Rev. 3(3), 209–227 (2004)CrossRef Peterson, S.L.: Toward a theoretical model of employee turnover: a human resource development perspective. Hum. Resour. Dev. Rev. 3(3), 209–227 (2004)CrossRef
5.
go back to reference Liu, D., Mitchell, T.R., Lee, T.W., Holtom, B.C., Hinkin, T.R.: When employees are out of step with coworkers: how job satisfaction trajectory and dispersion influence individual-and unit-level voluntary turnover. Acad. Manag. J. 55(6), 1360–1380 (2012)CrossRef Liu, D., Mitchell, T.R., Lee, T.W., Holtom, B.C., Hinkin, T.R.: When employees are out of step with coworkers: how job satisfaction trajectory and dispersion influence individual-and unit-level voluntary turnover. Acad. Manag. J. 55(6), 1360–1380 (2012)CrossRef
6.
go back to reference Heckert, T.M., Farabee, A.M.: Turnover intentions of the faculty at a teaching-focused university. Psychol. Rep. 99(1), 39–45 (2006)CrossRef Heckert, T.M., Farabee, A.M.: Turnover intentions of the faculty at a teaching-focused university. Psychol. Rep. 99(1), 39–45 (2006)CrossRef
7.
go back to reference Alao, D., Adeyemo, A.B.: Analyzing employee attrition using decision tree algorithms. Comput. Inf. Syst. Dev. Inform. J. 4(1), 17–28 (2013) Alao, D., Adeyemo, A.B.: Analyzing employee attrition using decision tree algorithms. Comput. Inf. Syst. Dev. Inform. J. 4(1), 17–28 (2013)
8.
go back to reference Srivastava, D.K., Nair, P.: Employee attrition analysis using predictive techniques. In: 2017 International Conference on Information and Communication Technology for Intelligent Systems, Ahmedabad, India, pp. 293–300 (2017) Srivastava, D.K., Nair, P.: Employee attrition analysis using predictive techniques. In: 2017 International Conference on Information and Communication Technology for Intelligent Systems, Ahmedabad, India, pp. 293–300 (2017)
9.
go back to reference Raman, R., Bhattacharya, S., Pramod, D.: Predict employee attrition by using predictive analytics. Benchmarking: Int. J. 26(1), 2–18 (2019) Raman, R., Bhattacharya, S., Pramod, D.: Predict employee attrition by using predictive analytics. Benchmarking: Int. J. 26(1), 2–18 (2019)
11.
go back to reference Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M.J.O.G.R.: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804–818 (2015)CrossRef Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M.J.O.G.R.: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804–818 (2015)CrossRef
12.
go back to reference Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006) Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)
13.
go back to reference John, V., Liu, Z., Guo, C., Mita, S., Kidono, K.: Real-time lane estimation using deep features and extra trees regression. In: Image and Video Technology: 7th Pacific-Rim Symposium, PSIVT 2015, Auckland, New Zealand, November 25–27, 2015, Revised Selected Papers 7 (pp. 721–733). Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-29451-3_57 John, V., Liu, Z., Guo, C., Mita, S., Kidono, K.: Real-time lane estimation using deep features and extra trees regression. In: Image and Video Technology: 7th Pacific-Rim Symposium, PSIVT 2015, Auckland, New Zealand, November 25–27, 2015, Revised Selected Papers 7 (pp. 721–733). Springer International Publishing (2016). https://​doi.​org/​10.​1007/​978-3-319-29451-3_​57
14.
go back to reference Huang, J, Sun, Y, Zhang, J.: Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm. Eng. Comput.1–18 (2021) Huang, J, Sun, Y, Zhang, J.: Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm. Eng. Comput.1–18 (2021)
15.
go back to reference Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001) Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)
16.
go back to reference Ramraj, S., Uzir, N., Sunil, R., Banerjee, S.: Experimenting XGBoost algorithm for prediction and classification of different datasets. Int. J. Control Theory Appl. 9(40), 651–662 (2016) Ramraj, S., Uzir, N., Sunil, R., Banerjee, S.: Experimenting XGBoost algorithm for prediction and classification of different datasets. Int. J. Control Theory Appl. 9(40), 651–662 (2016)
17.
go back to reference Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30 (2017) Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30 (2017)
18.
go back to reference Kaggle, “hr-comma-sep,” Kaggle, Ed., ed (2019) Kaggle, “hr-comma-sep,” Kaggle, Ed., ed (2019)
19.
go back to reference Armstrong, M.: Armstrong’s Handbook of Performance Management: An Evidence Based Guide to Deliver High Performance, (4.Ed), Kogan Page, London (2009) Armstrong, M.: Armstrong’s Handbook of Performance Management: An Evidence Based Guide to Deliver High Performance, (4.Ed), Kogan Page, London (2009)
20.
go back to reference Kara, Doğrusal Programlama. Bilim Teknik, Ankara (2010) Kara, Doğrusal Programlama. Bilim Teknik, Ankara (2010)
22.
go back to reference Öncan, T.: A survey of the generalized assignment problem and its applications. INFOR: Inf. Syst. Oper. Res. 45(3), 123–141 (2007) Öncan, T.: A survey of the generalized assignment problem and its applications. INFOR: Inf. Syst. Oper. Res. 45(3), 123–141 (2007)
Metadata
Title
Prediction of Employee Turnover in Organizations Using Machine Learning Algorithms: A Decision Making Perspective
Authors
Zeynep Kaya
Gazi Bilal Yildiz
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_12

Premium Partners