Skip to main content
Top
Published in:

04-03-2024

Prediction of Forest Fire Risk for Artillery Military Training using Weighted Support Vector Machine for Imbalanced Data

Authors: Ji Hyun Nam, Jongmin Mun, Seongil Jo, Jaeoh Kim

Published in: Journal of Classification | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since the 1953 truce, the Republic of Korea Army (ROKA) has regularly conducted artillery training, posing a risk of wildfires — a threat to both the environment and the public perception of national defense. To assess this risk and aid decision-making within the ROKA, we built a predictive model of wildfires triggered by artillery training. To this end, we combined the ROKA dataset with meteorological database. Given the infrequent occurrence of wildfires (imbalance ratio \(\approx \) 1:24 in our dataset), achieving balanced detection of wildfire occurrences and non-occurrences is challenging. Our approach combines a weighted support vector machine with a Gaussian mixture-based oversampling, effectively penalizing misclassification of the wildfires. Applied to our dataset, our method outperforms traditional algorithms (G-mean=0.864, sensitivity=0.956, specificity= 0.781), indicating balanced detection. This study not only helps reduce wildfires during artillery trainings but also provides a practical wildfire prediction method for similar climates worldwide.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmadlou, M., Karimi, M., & Pontius, R. G., Jr. (2022). A new framework to deal with the class imbalance problem in urban gain modeling based on clustering and ensemble models. Geocarto International, 37(19), 5669–5692.CrossRef Ahmadlou, M., Karimi, M., & Pontius, R. G., Jr. (2022). A new framework to deal with the class imbalance problem in urban gain modeling based on clustering and ensemble models. Geocarto International, 37(19), 5669–5692.CrossRef
go back to reference Ahmadlou, M., Karimi, M., & Al-Ansari, N. (2023). The use of maximum entropy and ecological niche factor analysis to decrease uncertainties in samples for urban gain models. GIScience & Remote Sensing, 60(1), 2222980.CrossRef Ahmadlou, M., Karimi, M., & Al-Ansari, N. (2023). The use of maximum entropy and ecological niche factor analysis to decrease uncertainties in samples for urban gain models. GIScience & Remote Sensing, 60(1), 2222980.CrossRef
go back to reference Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying Support Vector Machines to Imbalanced Datasets. In J.-F. Boulicaut, F. Esposito, F. Giannotti, & D. Pedreschi (Eds.), Machine Learning: ECML 2004 (pp. 39–50). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg. Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying Support Vector Machines to Imbalanced Datasets. In J.-F. Boulicaut, F. Esposito, F. Giannotti, & D. Pedreschi (Eds.), Machine Learning: ECML 2004 (pp. 39–50). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg.
go back to reference Al-Fugara, A., Mabdeh, A. N., Ahmadlou, M., Pourghasemi, H. R., Al-Adamat, R., Pradhan, B., & Al-Shabeeb, A. R. (2021). Wildland fire susceptibility mapping using support vector regression and adaptive neuro-fuzzy inference system-based whale optimization algorithm and simulated annealing. ISPRS International Journal of Geo-Information, 10(6), 382.CrossRef Al-Fugara, A., Mabdeh, A. N., Ahmadlou, M., Pourghasemi, H. R., Al-Adamat, R., Pradhan, B., & Al-Shabeeb, A. R. (2021). Wildland fire susceptibility mapping using support vector regression and adaptive neuro-fuzzy inference system-based whale optimization algorithm and simulated annealing. ISPRS International Journal of Geo-Information, 10(6), 382.CrossRef
go back to reference Anand, R., Mehrotra, K., Mohan, C., & Ranka, S. (1993). An improved algorithm for neural network classification of imbalanced training sets. IEEE Transactions on Neural Networks, 4(6), 962–969.CrossRef Anand, R., Mehrotra, K., Mohan, C., & Ranka, S. (1993). An improved algorithm for neural network classification of imbalanced training sets. IEEE Transactions on Neural Networks, 4(6), 962–969.CrossRef
go back to reference Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval, (1st ed.). Harlow: Addison Wesley. Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval, (1st ed.). Harlow: Addison Wesley.
go back to reference Bang, S., & Jhun, M. (2014). Weighted support vector machine using k-Means clustering. Communications in Statistics - Simulation and Computation, 43(10), 2307–2324.MathSciNetCrossRef Bang, S., & Jhun, M. (2014). Weighted support vector machine using k-Means clustering. Communications in Statistics - Simulation and Computation, 43(10), 2307–2324.MathSciNetCrossRef
go back to reference Barandela, R., Valdovinos, R. M., Sánchez, J. S., & Ferri, F. J. (2004). The imbalanced training sample problem: Under or over sampling? In A. Fred, T. M. Caelli, R. P. W. Duin, A. C. Campilho, & D. de Ridder (Eds.), Structural, Syntactic, and Statistical Pattern Recognition (pp. 806–814). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg. Barandela, R., Valdovinos, R. M., Sánchez, J. S., & Ferri, F. J. (2004). The imbalanced training sample problem: Under or over sampling? In A. Fred, T. M. Caelli, R. P. W. Duin, A. C. Campilho, & D. de Ridder (Eds.), Structural, Syntactic, and Statistical Pattern Recognition (pp. 806–814). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg.
go back to reference Barnes, S. L. (1964). A technique for maximizing details in numerical weather map analysis. Journal of Applied Meteorology and Climatology, 3(4), 396–409.CrossRef Barnes, S. L. (1964). A technique for maximizing details in numerical weather map analysis. Journal of Applied Meteorology and Climatology, 3(4), 396–409.CrossRef
go back to reference Beckmann, M., Ebecken, N., & Lima, B. (2015). A KNN undersampling approach for data balancing. Journal of Intelligent Learning Systems and Applications, 7, 104–116.CrossRef Beckmann, M., Ebecken, N., & Lima, B. (2015). A KNN undersampling approach for data balancing. Journal of Intelligent Learning Systems and Applications, 7, 104–116.CrossRef
go back to reference Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models assessment over imbalanced data sets. Journal of Information Engineering and Applications, 3(10), 27. Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models assessment over imbalanced data sets. Journal of Information Engineering and Applications, 3(10), 27.
go back to reference Belloi, A. P., Campesi, S., Nieddu, C., Tola, F., Deiana, S., Zizi, M., Muntoni, G., Tesei, G., Delitala, A., & Dessy, C. (2022). Strategies and measures for wildfire risk mitigation in the mediterranean area: The MED-Star project. Environmental Sciences Proceedings, 17(1), 124. Belloi, A. P., Campesi, S., Nieddu, C., Tola, F., Deiana, S., Zizi, M., Muntoni, G., Tesei, G., Delitala, A., & Dessy, C. (2022). Strategies and measures for wildfire risk mitigation in the mediterranean area: The MED-Star project. Environmental Sciences Proceedings, 17(1), 124.
go back to reference Blagus, R., & Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14, 106.CrossRef Blagus, R., & Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14, 106.CrossRef
go back to reference Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In T. Theeramunkong, B. Kijsirikul, N. Cercone, & T.-B. Ho (Eds.), Advances in knowledge discovery and data mining (pp. 475–482). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg. Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In T. Theeramunkong, B. Kijsirikul, N. Cercone, & T.-B. Ho (Eds.), Advances in knowledge discovery and data mining (pp. 475–482). Lecture Notes in Computer Science: Springer, Berlin, Heidelberg.
go back to reference Chawla, N., Lazarevic, A., Hall, L., & Bowyer, K. (2003). SMOTEBoost: Improving prediction of the minority class in boosting. In: Proceedings of the 7th European conference on principles and practice of knowledge discovery in database (vol. 2838, pp. 107–119) Chawla, N., Lazarevic, A., Hall, L., & Bowyer, K. (2003). SMOTEBoost: Improving prediction of the minority class in boosting. In: Proceedings of the 7th European conference on principles and practice of knowledge discovery in database (vol. 2838, pp. 107–119)
go back to reference Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1), 321–357.CrossRef Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1), 321–357.CrossRef
go back to reference Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1–6. Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1–6.
go back to reference Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.CrossRef Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.CrossRef
go back to reference Cox, T. F., & Cox, M. A. A. (2000). Multidimensional scaling (2nd ed.). CRC Press.CrossRef Cox, T. F., & Cox, M. A. A. (2000). Multidimensional scaling (2nd ed.). CRC Press.CrossRef
go back to reference Crowley, G., Kwon, S., Ostrofsky, D. F., Clementi, E. A., Haider, S. H., Caraher, E. J., Lam, R., St-Jules, D. E., Liu, M., Prezant, D. J., & Nolan, A. (2019). Assessing the protective metabolome using machine learning in world trade center particulate exposed firefighters at risk for lung injury. Scientific Reports, 9(1), 11939.CrossRef Crowley, G., Kwon, S., Ostrofsky, D. F., Clementi, E. A., Haider, S. H., Caraher, E. J., Lam, R., St-Jules, D. E., Liu, M., Prezant, D. J., & Nolan, A. (2019). Assessing the protective metabolome using machine learning in world trade center particulate exposed firefighters at risk for lung injury. Scientific Reports, 9(1), 11939.CrossRef
go back to reference Debnath, T., & Nakamoto, T. (2022). Predicting individual perceptual scent impression from imbalanced dataset using mass spectrum of odorant molecules. Scientific Reports, 12(1), 3778.CrossRef Debnath, T., & Nakamoto, T. (2022). Predicting individual perceptual scent impression from imbalanced dataset using mass spectrum of odorant molecules. Scientific Reports, 12(1), 3778.CrossRef
go back to reference Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.MathSciNet Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.MathSciNet
go back to reference Drummond, C., & Holte, R. C. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1), 95–130.CrossRef Drummond, C., & Holte, R. C. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1), 95–130.CrossRef
go back to reference Fernández, A., del Jesus, M. J., & Herrera, F. (2009). Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. International Journal of Approximate Reasoning, 50(3), 561–577.CrossRef Fernández, A., del Jesus, M. J., & Herrera, F. (2009). Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. International Journal of Approximate Reasoning, 50(3), 561–577.CrossRef
go back to reference Gao, M., Hong, X., Chen, S., & Harris, C. J. (2011). A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing, 74(17), 3456–3466.CrossRef Gao, M., Hong, X., Chen, S., & Harris, C. J. (2011). A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing, 74(17), 3456–3466.CrossRef
go back to reference Gao, S., & Li, S. (2022). Bloody Mahjong playing strategy based on the integration of deep learning and XGBoost. CAAI Transactions on Intelligence Technology, 7(1), 95–106.CrossRef Gao, S., & Li, S. (2022). Bloody Mahjong playing strategy based on the integration of deep learning and XGBoost. CAAI Transactions on Intelligence Technology, 7(1), 95–106.CrossRef
go back to reference Gasparin, A., Lukovic, S., & Alippi, C. (2022). Deep learning for time series forecasting: The electric load case. CAAI Transactions on Intelligence Technology, 7(1), 1–25.CrossRef Gasparin, A., Lukovic, S., & Alippi, C. (2022). Deep learning for time series forecasting: The electric load case. CAAI Transactions on Intelligence Technology, 7(1), 1–25.CrossRef
go back to reference Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, Massachusetts: The MIT Press. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, Massachusetts: The MIT Press.
go back to reference Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220–239.CrossRef Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220–239.CrossRef
go back to reference Halofsky, J. E., Peterson, D. L., & Harvey, B. J. (2020). Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16(1), 4.CrossRef Halofsky, J. E., Peterson, D. L., & Harvey, B. J. (2020). Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16(1), 4.CrossRef
go back to reference Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. SpringerIn D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, D.-S. Huang, X.-P. Zhang, & G.-B. Huang (Eds.), Advances in intelligent computing (Vol. 3644, pp. 878–887). Berlin, Heidelberg: Berlin Heidelberg.CrossRef Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. SpringerIn D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, D.-S. Huang, X.-P. Zhang, & G.-B. Huang (Eds.), Advances in intelligent computing (Vol. 3644, pp. 878–887). Berlin, Heidelberg: Berlin Heidelberg.CrossRef
go back to reference Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103–123.CrossRef Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103–123.CrossRef
go back to reference He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.CrossRef He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.CrossRef
go back to reference Jafari Goldarag, Y., Mohammadzadeh, A., & Ardakani, A. S. (2016). Fire risk assessment using neural network and logistic regression. Journal of the Indian Society of Remote Sensing, 44(6), 885–894.CrossRef Jafari Goldarag, Y., Mohammadzadeh, A., & Ardakani, A. S. (2016). Fire risk assessment using neural network and logistic regression. Journal of the Indian Society of Remote Sensing, 44(6), 885–894.CrossRef
go back to reference Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429–449.CrossRef Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429–449.CrossRef
go back to reference Jiao, Z., Zhang., Y., Xin, J., Mu, L., Yi, Y., Liu, H., & Liu, D. (2019). A deep learning based forest fire detection approach using UAV and YOLOv3. In 2019 1st international conference on industrial artificial intelligence (IAI) (pp. 1–5) Jiao, Z., Zhang., Y., Xin, J., Mu, L., Yi, Y., Liu, H., & Liu, D. (2019). A deep learning based forest fire detection approach using UAV and YOLOv3. In 2019 1st international conference on industrial artificial intelligence (IAI) (pp. 1–5)
go back to reference Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1), 51.CrossRef Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1), 51.CrossRef
go back to reference Kim, S., Lee, W., Park, Y.-s., Lee, H.-W., & Lee, Y.-T. (2016). Forest fire monitoring system based on aerial image. In 2016 3rd International conference on information and communication technologies for disaster management (ICT-DM) (pp. 1–6) Kim, S., Lee, W., Park, Y.-s., Lee, H.-W., & Lee, Y.-T. (2016). Forest fire monitoring system based on aerial image. In 2016 3rd International conference on information and communication technologies for disaster management (ICT-DM) (pp. 1–6)
go back to reference Kloprogge, P., van der Sluijs, J. P., & Petersen, A. C. (2011). A method for the analysis of assumptions in model-based environmental assessments. Environmental Modelling & Software, 26(3), 289–301.CrossRef Kloprogge, P., van der Sluijs, J. P., & Petersen, A. C. (2011). A method for the analysis of assumptions in model-based environmental assessments. Environmental Modelling & Software, 26(3), 289–301.CrossRef
go back to reference Koziarski, M. (2021). CSMOUTE: Combined synthetic oversampling and undersampling technique for imbalanced data classification. In 2021 International joint conference on neural networks (IJCNN) (pp. 1–8) Koziarski, M. (2021). CSMOUTE: Combined synthetic oversampling and undersampling technique for imbalanced data classification. In 2021 International joint conference on neural networks (IJCNN) (pp. 1–8)
go back to reference Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221–232.CrossRef Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221–232.CrossRef
go back to reference Krueger, E. S., Levi, M. R., Achieng, K. O., Bolten, J. D., Carlson, J. D., Coops, N. C., Holden, Z. A., Magi, B. I., Rigden, A. J., & Ochsner, T. E. (2022). Using soil moisture information to better understand and predict wildfire danger: A review of recent developments and outstanding questions. International Journal of Wildland Fire, 32(2), 111–132.CrossRef Krueger, E. S., Levi, M. R., Achieng, K. O., Bolten, J. D., Carlson, J. D., Coops, N. C., Holden, Z. A., Magi, B. I., Rigden, A. J., & Ochsner, T. E. (2022). Using soil moisture information to better understand and predict wildfire danger: A review of recent developments and outstanding questions. International Journal of Wildland Fire, 32(2), 111–132.CrossRef
go back to reference Kubát, M, & Matwin, S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In International conference on machine learning Kubát, M, & Matwin, S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In International conference on machine learning
go back to reference Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2009). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539–550 Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2009). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539–550
go back to reference López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113–141.CrossRef López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113–141.CrossRef
go back to reference Mani, I. (2003). KNN approach to unbalanced data distributions: A case study involving information extraction. In Proceedings of workshop on learning from imbalanced datasets Mani, I. (2003). KNN approach to unbalanced data distributions: A case study involving information extraction. In Proceedings of workshop on learning from imbalanced datasets
go back to reference Mease, D., Wyner, A. J., & Buja, A. (2007). Boosted classification trees and class probability/quantile estimation. Journal of Machine Learning Research, 8(16), 409–439. Mease, D., Wyner, A. J., & Buja, A. (2007). Boosted classification trees and class probability/quantile estimation. Journal of Machine Learning Research, 8(16), 409–439.
go back to reference Ngoc Thach, N., Bao-Toan Ngo, D., Xuan-Canh, P., Hong-Thi, N., Hang Thi, B., Nhat-Duc, H., & Dieu, T. B. (2018). Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics, 46, 74–85.CrossRef Ngoc Thach, N., Bao-Toan Ngo, D., Xuan-Canh, P., Hong-Thi, N., Hang Thi, B., Nhat-Duc, H., & Dieu, T. B. (2018). Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics, 46, 74–85.CrossRef
go back to reference Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2011). A survey on graphical methods for classification predictive performance evaluation. IEEE Transactions on Knowledge and Data Engineering, 23(11), 1601–1618.CrossRef Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2011). A survey on graphical methods for classification predictive performance evaluation. IEEE Transactions on Knowledge and Data Engineering, 23(11), 1601–1618.CrossRef
go back to reference Ramentol, E., Verbiest, N., Bello, R., Caballero, Y., Cornelis, C., & Herrera, F. (2012). SMOTE-FRST: A new resampling method using fuzzy rough set theory. In Uncertainty modeling in knowledge engineering and decision making, world scientific proceedings series on computer engineering and information science (Vol. 7, WORLD SCIENTIFIC, pp. 800–805) Ramentol, E., Verbiest, N., Bello, R., Caballero, Y., Cornelis, C., & Herrera, F. (2012). SMOTE-FRST: A new resampling method using fuzzy rough set theory. In Uncertainty modeling in knowledge engineering and decision making, world scientific proceedings series on computer engineering and information science (Vol. 7, WORLD SCIENTIFIC, pp. 800–805)
go back to reference Rodrigues, M., & de la Riva, J. (2014). An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software, 57, 192–201.CrossRef Rodrigues, M., & de la Riva, J. (2014). An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software, 57, 192–201.CrossRef
go back to reference Shamsudin, H., Yusof, U. K., Jayalakshmi, A., & Akmal Khalid, M. N. (2020). Combining oversampling and undersampling techniques for imbalanced classification: A comparative study using credit card fraudulent transaction dataset. In 2020 IEEE 16th international conference on control & automation (ICCA) (pp. 803–808) Shamsudin, H., Yusof, U. K., Jayalakshmi, A., & Akmal Khalid, M. N. (2020). Combining oversampling and undersampling techniques for imbalanced classification: A comparative study using credit card fraudulent transaction dataset. In 2020 IEEE 16th international conference on control & automation (ICCA) (pp. 803–808)
go back to reference Shaw, J. D., Goeking, S. A., Menlove, J., & Werstak, C. E., Jr. (2017). Assessment of fire effects based on forest inventory and analysis data and a long-term fire mapping data set. Journal of Forestry, 115(4), 258–269.CrossRef Shaw, J. D., Goeking, S. A., Menlove, J., & Werstak, C. E., Jr. (2017). Assessment of fire effects based on forest inventory and analysis data and a long-term fire mapping data set. Journal of Forestry, 115(4), 258–269.CrossRef
go back to reference Stocks, B. J., Lawson, B. D., Alexander, M. E., Wagner, C. E. V., McAlpine, R. S., Lynham, T. J., & Dubé, D. E. (1989). The Canadian forest fire danger rating system: An overview. The Forestry Chronicle, 65(6), 450–457.CrossRef Stocks, B. J., Lawson, B. D., Alexander, M. E., Wagner, C. E. V., McAlpine, R. S., Lynham, T. J., & Dubé, D. E. (1989). The Canadian forest fire danger rating system: An overview. The Forestry Chronicle, 65(6), 450–457.CrossRef
go back to reference Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358–3378.CrossRef Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358–3378.CrossRef
go back to reference Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics SMC-6 (11), 769–772 Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics SMC-6 (11), 769–772
go back to reference United States Department of Agriculture (2015) FARSITE: Fire Area Simulator - Model Development and Evaluation. CreateSpace Independent Publishing Platform United States Department of Agriculture (2015) FARSITE: Fire Area Simulator - Model Development and Evaluation. CreateSpace Independent Publishing Platform
go back to reference Van Wagner, C. E. (1987). Development and structure of the Canadian forest fire weather index system. Forestry Technical Report, 35, 35. Van Wagner, C. E. (1987). Development and structure of the Canadian forest fire weather index system. Forestry Technical Report, 35, 35.
go back to reference Veropoulos, K., Campbell, C., & Cristianini, N. (1999). Controlling the sensitivity of support vector machines. In Proceedings of the international joint conference on AI, Stockholm (Vol. 55, pp 60) Veropoulos, K., Campbell, C., & Cristianini, N. (1999). Controlling the sensitivity of support vector machines. In Proceedings of the international joint conference on AI, Stockholm (Vol. 55, pp 60)
go back to reference Winkler, R. L. (1969). Scoring rules and the evaluation of probability assessors. Journal of the American Statistical Association, 64(327), 1073–1078, 2283486 Winkler, R. L. (1969). Scoring rules and the evaluation of probability assessors. Journal of the American Statistical Association, 64(327), 1073–1078, 2283486
go back to reference Xu, R., Lin, H., Lu, K., Cao, L., & Liu, Y. (2021). A forest fire detection system based on ensemble learning. Forests, 12(2), 217.CrossRef Xu, R., Lin, H., Lu, K., Cao, L., & Liu, Y. (2021). A forest fire detection system based on ensemble learning. Forests, 12(2), 217.CrossRef
go back to reference Yu, Y., Mao, J., Wullschleger, S. D., Chen, A., Shi, X., Wang, Y., Hoffman, F. M., Zhang, Y., & Pierce, E. (2022). Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 13(1), 1250.CrossRef Yu, Y., Mao, J., Wullschleger, S. D., Chen, A., Shi, X., Wang, Y., Hoffman, F. M., Zhang, Y., & Pierce, E. (2022). Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 13(1), 1250.CrossRef
go back to reference Zhang, Q., Xiao, J., Tian, C., Chun-Wei Lin, J., & Zhang, S. (2023). A robust deformed convolutional neural network (CNN) for image denoising. CAAI Transactions on Intelligence Technology, 8(2), 331–342.CrossRef Zhang, Q., Xiao, J., Tian, C., Chun-Wei Lin, J., & Zhang, S. (2023). A robust deformed convolutional neural network (CNN) for image denoising. CAAI Transactions on Intelligence Technology, 8(2), 331–342.CrossRef
go back to reference Zhao, X.-M., Li, X., Chen, L., & Aihara, K. (2008). Protein classification with imbalanced data. Proteins: Structure, Function, and Bioinformatics, 70(4), 1125–1132 Zhao, X.-M., Li, X., Chen, L., & Aihara, K. (2008). Protein classification with imbalanced data. Proteins: Structure, Function, and Bioinformatics, 70(4), 1125–1132
Metadata
Title
Prediction of Forest Fire Risk for Artillery Military Training using Weighted Support Vector Machine for Imbalanced Data
Authors
Ji Hyun Nam
Jongmin Mun
Seongil Jo
Jaeoh Kim
Publication date
04-03-2024
Publisher
Springer US
Published in
Journal of Classification / Issue 1/2024
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-024-09467-1

Premium Partner