Skip to main content
Top

2024 | OriginalPaper | Chapter

Prediction of Heart Disease Using Fuzzy Rough Set Based Instance Selection and Machine Learning Algorithms

Authors : Orhan Torkul, Safiye Turgay, Merve Şişci, Gül Babacan

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the prediction of heart disease using advanced data analysis techniques. It highlights the application of Fuzzy Rough Set Based Instance Selection to refine datasets, enhancing the accuracy and reliability of machine learning algorithms. The study compares the performance of seven machine learning models, including Averaged Perceptron, Bayes Point Machine, and Boosted Decision Tree, both with and without instance selection. The results showcase significant improvements in accuracy, precision, recall, and F1-Score, emphasizing the effectiveness of the Fuzzy Rough Set Based Instance Selection method. This research not only provides valuable insights into heart disease prediction but also sets a benchmark for future studies in healthcare data analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Siddhartha, M.: Heart disease dataset (comprehensive). IEEE Dataport (2020) Siddhartha, M.: Heart disease dataset (comprehensive). IEEE Dataport (2020)
2.
go back to reference Reddy, K.V.V., Elamvazuthi, I., Aziz, A.A., Paramasivam, S., Chua, H.N., Pranavanand, S.: Heart disease risk prediction using machine learning classifiers with attribute evaluators. Appl. Sci 11(18), 8352 (2021)CrossRef Reddy, K.V.V., Elamvazuthi, I., Aziz, A.A., Paramasivam, S., Chua, H.N., Pranavanand, S.: Heart disease risk prediction using machine learning classifiers with attribute evaluators. Appl. Sci 11(18), 8352 (2021)CrossRef
4.
go back to reference Anbarasi, N.C.S.N.I.M., Anupriya, E.: Enhanced prediction of heart disease with feature subset selection using genetic algorithm enhanced prediction of heart disease with feature subset selection using genetic algorithm. Int. J. Eng. Sci. Technol. 2(10), 5370–5376 (2010) Anbarasi, N.C.S.N.I.M., Anupriya, E.: Enhanced prediction of heart disease with feature subset selection using genetic algorithm enhanced prediction of heart disease with feature subset selection using genetic algorithm. Int. J. Eng. Sci. Technol. 2(10), 5370–5376 (2010)
5.
go back to reference Kavitha, M., Gnaneswar, G., Dinesh, R., Sai, Y.R., Suraj, R.S.: Heart disease prediction using hybrid machine learning model. In: Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, pp. 1329–1333. IEEE, India (2021) Kavitha, M., Gnaneswar, G., Dinesh, R., Sai, Y.R., Suraj, R.S.: Heart disease prediction using hybrid machine learning model. In: Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, pp. 1329–1333. IEEE, India (2021)
6.
go back to reference Dangare, C., Apte, S.: A data mining approach for prediction of heart disease using neural networks. Int. J. Comput. Eng. Technol. (IJCET) 3(3) (2012) Dangare, C., Apte, S.: A data mining approach for prediction of heart disease using neural networks. Int. J. Comput. Eng. Technol. (IJCET) 3(3) (2012)
7.
go back to reference Birchha, V., Nigam, B.: Performance analysis of averaged perceptron machine learning classifier for breast cancer detection. Procedia Comput. Sci. 218, 2181–2190 (2023)CrossRef Birchha, V., Nigam, B.: Performance analysis of averaged perceptron machine learning classifier for breast cancer detection. Procedia Comput. Sci. 218, 2181–2190 (2023)CrossRef
8.
go back to reference Aswathi, R.R., Jency, J., Ramakrishnan, B., Thanammal, K.K.: Classification based neural network perceptron modelling with continuous and sequential data. Microprocess. Microsyst. 104601 (2022) Aswathi, R.R., Jency, J., Ramakrishnan, B., Thanammal, K.K.: Classification based neural network perceptron modelling with continuous and sequential data. Microprocess. Microsyst. 104601 (2022)
9.
go back to reference Asencios, R., Asencios, C., Ramos, E.: Profit scoring for credit unions using the multilayer perceptron, XGBoost and TabNet algorithms: evidence from Peru. Expert Syst. Appl. 213, 119201 (2023)CrossRef Asencios, R., Asencios, C., Ramos, E.: Profit scoring for credit unions using the multilayer perceptron, XGBoost and TabNet algorithms: evidence from Peru. Expert Syst. Appl. 213, 119201 (2023)CrossRef
10.
go back to reference Nanda, A.K., Gupta, S., Saleth, A.L.M., Kiran, S.: Multi-layer perceptron’s neural network with optimization algorithm for greenhouse gas forecasting systems. Environ. Challenges 11, 100708 (2023)CrossRef Nanda, A.K., Gupta, S., Saleth, A.L.M., Kiran, S.: Multi-layer perceptron’s neural network with optimization algorithm for greenhouse gas forecasting systems. Environ. Challenges 11, 100708 (2023)CrossRef
12.
go back to reference Kumar, P.R., Vijaya, A.: Naïve Bayes machine learning model for image classification to assess the level of deformation of thin components. Mater. Today: Proc. 68, 2265–2274 (2022)CrossRef Kumar, P.R., Vijaya, A.: Naïve Bayes machine learning model for image classification to assess the level of deformation of thin components. Mater. Today: Proc. 68, 2265–2274 (2022)CrossRef
13.
go back to reference Bogdal, C., Schellenberg, R., Höpli, O., Bovens, M., Lory, M.: Recognition of gasoline in fire debris using machine learning: part I, application of random forest, gradient boosting, support vector machine, and naïve bayes. Forensic Sci. Int. 331, 111146 (2022)CrossRef Bogdal, C., Schellenberg, R., Höpli, O., Bovens, M., Lory, M.: Recognition of gasoline in fire debris using machine learning: part I, application of random forest, gradient boosting, support vector machine, and naïve bayes. Forensic Sci. Int. 331, 111146 (2022)CrossRef
14.
go back to reference Santana, É.R., Lopes, L., de Moraes, R. M.: Recognition of the effect of vocal exercises by fuzzy triangular naive bayes, a machine learning classifier: a preliminary analysis. J. Voice (2022) Santana, É.R., Lopes, L., de Moraes, R. M.: Recognition of the effect of vocal exercises by fuzzy triangular naive bayes, a machine learning classifier: a preliminary analysis. J. Voice (2022)
15.
go back to reference Maloney, D., Hong, S.C., Nag, B.N.: Two class Bayes point machines in repayment prediction of low credit borrowers. Heliyon 8(11), e11479 (2022)CrossRef Maloney, D., Hong, S.C., Nag, B.N.: Two class Bayes point machines in repayment prediction of low credit borrowers. Heliyon 8(11), e11479 (2022)CrossRef
16.
go back to reference Hashemizadeh, A., Maaref, A., Shateri, M., Larestani, A., Hemmati-Sarapardeh, A.: Experimental measurement and modeling of water-based drilling mud density using adaptive boosting decision tree, support vector machine, and K-nearest neighbors: a case study from the South Pars gas field. J. Petrol. Sci. Eng. 207, 109132 (2021)CrossRef Hashemizadeh, A., Maaref, A., Shateri, M., Larestani, A., Hemmati-Sarapardeh, A.: Experimental measurement and modeling of water-based drilling mud density using adaptive boosting decision tree, support vector machine, and K-nearest neighbors: a case study from the South Pars gas field. J. Petrol. Sci. Eng. 207, 109132 (2021)CrossRef
17.
go back to reference Wang, K., Lu, J., Liu, A., Song, Y., Xiong, L., Zhang, G.: Elastic gradient boosting decision tree with adaptive iterations for concept drift adaptation. Neurocomputing 491, 288–304 (2022)CrossRef Wang, K., Lu, J., Liu, A., Song, Y., Xiong, L., Zhang, G.: Elastic gradient boosting decision tree with adaptive iterations for concept drift adaptation. Neurocomputing 491, 288–304 (2022)CrossRef
18.
go back to reference Liu, W., Fan, H., Xia, M., Pang, C.: Predicting and interpreting financial distress using a weighted boosted tree-based tree. Eng. Appl. Artif. Intell. 116, 105466 (2022)CrossRef Liu, W., Fan, H., Xia, M., Pang, C.: Predicting and interpreting financial distress using a weighted boosted tree-based tree. Eng. Appl. Artif. Intell. 116, 105466 (2022)CrossRef
19.
go back to reference Liu, W., Fan, H., Xia, M.: Credit scoring based on tree-enhanced gradient boosting decision trees. Expert Syst. Appl. 189, 116034 (2022)CrossRef Liu, W., Fan, H., Xia, M.: Credit scoring based on tree-enhanced gradient boosting decision trees. Expert Syst. Appl. 189, 116034 (2022)CrossRef
20.
go back to reference Qian, H., Wang, B., Yuan, M., Gao, S., Song, Y.: Financial distress prediction using a corrected feature selection measure and gradient boosted decision tree. Expert Syst. Appl. 190, 116202 (2022)CrossRef Qian, H., Wang, B., Yuan, M., Gao, S., Song, Y.: Financial distress prediction using a corrected feature selection measure and gradient boosted decision tree. Expert Syst. Appl. 190, 116202 (2022)CrossRef
21.
go back to reference Albano, A., Sciandra, M., Plaia, A.: A weighted distance-based approach with boosted decision trees for label ranking. Expert Syst. Appl. 213, 119000 (2023)CrossRef Albano, A., Sciandra, M., Plaia, A.: A weighted distance-based approach with boosted decision trees for label ranking. Expert Syst. Appl. 213, 119000 (2023)CrossRef
22.
go back to reference Louk, M.H.L., Tama, B.A.: Dual-IDS: a bagging-based gradient boosting decision tree model for network anomaly intrusion detection system. Expert Syst. Appl. 213, 119030 (2023)CrossRef Louk, M.H.L., Tama, B.A.: Dual-IDS: a bagging-based gradient boosting decision tree model for network anomaly intrusion detection system. Expert Syst. Appl. 213, 119030 (2023)CrossRef
23.
go back to reference Lee, S.B., et al.: Predicting Parkinson’s disease using gradient boosting decision tree models with electroencephalography signals. Parkinsonism Relat. Disord. 95, 77–85 (2022)CrossRef Lee, S.B., et al.: Predicting Parkinson’s disease using gradient boosting decision tree models with electroencephalography signals. Parkinsonism Relat. Disord. 95, 77–85 (2022)CrossRef
24.
go back to reference Cárdenas, L.L., León, J.P.A., Mezher, A.M.: GraTree: a gradient boosting decision tree based multimetric routing protocol for vehicular ad hoc networks. Ad Hoc Netw. 137, 102995 (2022)CrossRef Cárdenas, L.L., León, J.P.A., Mezher, A.M.: GraTree: a gradient boosting decision tree based multimetric routing protocol for vehicular ad hoc networks. Ad Hoc Netw. 137, 102995 (2022)CrossRef
25.
go back to reference Ali, F.Z., Wengler, K., He, X., Nguyen, M.H., Parsey, R.V., DeLorenzo, C.: Gradient boosting decision-tree-based algorithm with neuroimaging for personalized treatment in depression. Neurosci. Informatics, 100110 (2022) Ali, F.Z., Wengler, K., He, X., Nguyen, M.H., Parsey, R.V., DeLorenzo, C.: Gradient boosting decision-tree-based algorithm with neuroimaging for personalized treatment in depression. Neurosci. Informatics, 100110 (2022)
26.
go back to reference Brenon, A., Moncla, L., McDonough, K.: Classifying encyclopedia articles: comparing machine and deep learning methods and exploring their predictions. Data Knowl. Eng. 142, 102098 (2022)CrossRef Brenon, A., Moncla, L., McDonough, K.: Classifying encyclopedia articles: comparing machine and deep learning methods and exploring their predictions. Data Knowl. Eng. 142, 102098 (2022)CrossRef
27.
go back to reference Menagadevi, M., Mangai, S., Madian, N., Thiyagarajan, D.: Automated prediction system for Alzheimer detection based on deep residual autoencoder and support vector machine. Optik 272, 170212 (2023)CrossRef Menagadevi, M., Mangai, S., Madian, N., Thiyagarajan, D.: Automated prediction system for Alzheimer detection based on deep residual autoencoder and support vector machine. Optik 272, 170212 (2023)CrossRef
28.
go back to reference Lahmiri, S.: Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomed. Signal Process. Control 60, 101978 (2020)CrossRef Lahmiri, S.: Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomed. Signal Process. Control 60, 101978 (2020)CrossRef
29.
go back to reference Abhishek, A., Jha, R.K., Sinha, R., Jha, K.: Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques. Biomed. Signal Process. Control 72, 103341 (2022)CrossRef Abhishek, A., Jha, R.K., Sinha, R., Jha, K.: Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques. Biomed. Signal Process. Control 72, 103341 (2022)CrossRef
30.
go back to reference Hasan, M., et al.: Pre-hospital prediction of adverse outcomes in patients with suspected COVID-19: Development, application and comparison of machine learning and deep learning methods. Comput. Biol. Med. 151 (2022) Hasan, M., et al.: Pre-hospital prediction of adverse outcomes in patients with suspected COVID-19: Development, application and comparison of machine learning and deep learning methods. Comput. Biol. Med. 151 (2022)
31.
go back to reference Hong, H., Pradhan, B., Xu, C., Bui, D.T.: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. CATENA 133, 266–281 (2015)CrossRef Hong, H., Pradhan, B., Xu, C., Bui, D.T.: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. CATENA 133, 266–281 (2015)CrossRef
32.
go back to reference El-Atta, A.H.A., Hassanien, A.E.: Two-class support vector machine with new kernel function based on paths of features for predicting chemical activity. Inf. Sci. 403, 42–54 (2017)CrossRef El-Atta, A.H.A., Hassanien, A.E.: Two-class support vector machine with new kernel function based on paths of features for predicting chemical activity. Inf. Sci. 403, 42–54 (2017)CrossRef
33.
go back to reference Durán-Rosal, A.M., Durán-Fernández, A., Fernández-Navarro, F., Carbonero-Ruz, M.: A multi-class classification model with parametrized target outputs for randomized-based feedforward neural networks. Appl. Soft Comput. 133, 109914 (2023)CrossRef Durán-Rosal, A.M., Durán-Fernández, A., Fernández-Navarro, F., Carbonero-Ruz, M.: A multi-class classification model with parametrized target outputs for randomized-based feedforward neural networks. Appl. Soft Comput. 133, 109914 (2023)CrossRef
34.
go back to reference Godoy, C., et al.: Predicting left main stenosis in stable ischemic heart disease using logistic regression and boosted trees Lucas. Am. Heart J. 256, 117–127 (2023)CrossRef Godoy, C., et al.: Predicting left main stenosis in stable ischemic heart disease using logistic regression and boosted trees Lucas. Am. Heart J. 256, 117–127 (2023)CrossRef
35.
go back to reference Jensen, R., Cornelis, C.: Fuzzy-rough instance selection. In International Conference on Fuzzy Systems, pp. 1–7. IEEE, Spain (2010) Jensen, R., Cornelis, C.: Fuzzy-rough instance selection. In International Conference on Fuzzy Systems, pp. 1–7. IEEE, Spain (2010)
36.
go back to reference Derrac, J., Cornelis, C., García, S., Herrera, F.: Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Inf. Sci. 186(1), 73–92 (2012)CrossRef Derrac, J., Cornelis, C., García, S., Herrera, F.: Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Inf. Sci. 186(1), 73–92 (2012)CrossRef
37.
go back to reference Riza, L.S., et al.: Package ‘roughsets’ (2015) Riza, L.S., et al.: Package ‘roughsets’ (2015)
38.
go back to reference Lantz, B.: Machine Learning with R, 2nd edn. Packt Publishing, Birmingham (2015) Lantz, B.: Machine Learning with R, 2nd edn. Packt Publishing, Birmingham (2015)
39.
go back to reference Subasi, A.: Practical Machine Learning for Data Analysis Using Python. Academic Press, London (2020) Subasi, A.: Practical Machine Learning for Data Analysis Using Python. Academic Press, London (2020)
Metadata
Title
Prediction of Heart Disease Using Fuzzy Rough Set Based Instance Selection and Machine Learning Algorithms
Authors
Orhan Torkul
Safiye Turgay
Merve Şişci
Gül Babacan
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_66

Premium Partners