Skip to main content
Top

2023 | OriginalPaper | Chapter

Prediction of Interface Friction Angle Between Landfill Liner and Soil Using Machine Learning

Authors : Faizanjunaid Mohammed, Sasanka Mouli Sravanam, K. V. N. S. Raviteja

Published in: Recent Advances in Sustainable Environment

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study employs machine learning (ML) techniques and artificial neural networks (ANN) to predict the interface friction angle between the landfill liner and the soil. The interface behavior is majorly affected by the thickness of landfill liner (t), mass of landfill liner (m), tensile strength of landfill liner (T), cohesion of soil (cu), angle of shearing resistance of soil (Φ), shear strength (τ), and normal stress (σ). As the stability of landfill liner varies significantly from that of the soil due to the non-homogeneity and anisotropic character of the soil, it is critical to comprehend the interface behavior between the landfill liner and the soil. However, no prior research employing machine learning techniques to analyze the interface behavior between landfill liners and soil has been reported; a study using machine learning algorithms and artificial neural networks is carried out on 66 datasets to probe the interface behavior with the help of an ANACONDA navigator. Further, to understand the impact of input variables on the output variable, Pearson’s correlation coefficients were determined. Mean absolute error (MEA) is considered as a loss function, and the best model was chosen based on the r2-value. Random forest regressor (RFR) model is determined to be the best model among the available models with an r2-score of 0.99 and a minimum mean absolute error of 0.46.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fishman KL, Pal S (1994) Further study of geomembrane/cohesive soil interface shear behavior. Geotext Geomembr 13(9):571–590CrossRef Fishman KL, Pal S (1994) Further study of geomembrane/cohesive soil interface shear behavior. Geotext Geomembr 13(9):571–590CrossRef
2.
go back to reference Palmeira EM (2009) Soil–geosynthetic interaction: modelling and analysis. Geotext Geomembr 27(5):368–390CrossRef Palmeira EM (2009) Soil–geosynthetic interaction: modelling and analysis. Geotext Geomembr 27(5):368–390CrossRef
3.
go back to reference Stark TD, Poeppel AR (1994) Landfill liner interface strengths from torsional-ring-shear tests. J Geotech Eng 120(3):597–615CrossRef Stark TD, Poeppel AR (1994) Landfill liner interface strengths from torsional-ring-shear tests. J Geotech Eng 120(3):597–615CrossRef
4.
go back to reference Monteiro CB, Araújo GLS, Palmeira EM, Neto MPC (2013) Soil-geosynthetic interface strength on smooth and texturized geomembranes under different test conditions. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. Paris, pp 3053–3056 Monteiro CB, Araújo GLS, Palmeira EM, Neto MPC (2013) Soil-geosynthetic interface strength on smooth and texturized geomembranes under different test conditions. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. Paris, pp 3053–3056
5.
go back to reference Raviteja KVNS, Munwar B, Basha S (2015) Variability associated with interface friction between geomembrane and soil. In: 50th Indian geotechnical conference, Pune, India Raviteja KVNS, Munwar B, Basha S (2015) Variability associated with interface friction between geomembrane and soil. In: 50th Indian geotechnical conference, Pune, India
6.
go back to reference Dadhich S, Sharma JK, Madhira M (2021) Prediction of ultimate bearing capacity of aggregate pier reinforced clay using machine learning. Int J Geosynth Ground Eng 7(2):1–16CrossRef Dadhich S, Sharma JK, Madhira M (2021) Prediction of ultimate bearing capacity of aggregate pier reinforced clay using machine learning. Int J Geosynth Ground Eng 7(2):1–16CrossRef
7.
go back to reference Ali F, Salman FA, Subramaniam S (2012) Influence of surface texture on the interface shear capacity of landfill liner. Electron J Geotech Eng 17:101–114 Ali F, Salman FA, Subramaniam S (2012) Influence of surface texture on the interface shear capacity of landfill liner. Electron J Geotech Eng 17:101–114
8.
go back to reference Stark TD, Choi H, Lee C, Queen B (2012) Compacted soil liner interface strength importance. J Geotech Geoenviron Eng 138(4):544–550CrossRef Stark TD, Choi H, Lee C, Queen B (2012) Compacted soil liner interface strength importance. J Geotech Geoenviron Eng 138(4):544–550CrossRef
9.
go back to reference Vaid YP, Rinne N (1995) Geomembrane coefficients of interface friction. Geosynth Int 2(1):309–325CrossRef Vaid YP, Rinne N (1995) Geomembrane coefficients of interface friction. Geosynth Int 2(1):309–325CrossRef
10.
go back to reference Palmeira EM, Lima NR Jr, Mello LGR (2002) Interaction between soils and geosynthetic layers in large-scale ramp tests. Geosynth Int 9(2):149–187CrossRef Palmeira EM, Lima NR Jr, Mello LGR (2002) Interaction between soils and geosynthetic layers in large-scale ramp tests. Geosynth Int 9(2):149–187CrossRef
11.
go back to reference Rinne NF (1989) Evaluation of interface friction between cohesionless soil and common construction materials. Doctoral dissertation, University of British Columbia Rinne NF (1989) Evaluation of interface friction between cohesionless soil and common construction materials. Doctoral dissertation, University of British Columbia
12.
go back to reference O’rourke TD, Druschel SJ, Netravali AN (1990) Shear strength characteristics of sand-polymer interfaces. J Geotech Eng 116(3):451–469CrossRef O’rourke TD, Druschel SJ, Netravali AN (1990) Shear strength characteristics of sand-polymer interfaces. J Geotech Eng 116(3):451–469CrossRef
13.
go back to reference Esterhuizen JJ, Filz GM, Duncan JM (2001) Constitutive behavior of geosynthetic interfaces. J Geotech Geoenviron Eng 127(10):834–840CrossRef Esterhuizen JJ, Filz GM, Duncan JM (2001) Constitutive behavior of geosynthetic interfaces. J Geotech Geoenviron Eng 127(10):834–840CrossRef
14.
go back to reference Mitchell JK, Seed RB, Seed HB (1990) Kettleman Hills waste landfill slope failure. I: liner-system properties. J Geotech Eng 116(4):647–668 Mitchell JK, Seed RB, Seed HB (1990) Kettleman Hills waste landfill slope failure. I: liner-system properties. J Geotech Eng 116(4):647–668
15.
go back to reference Koerner RM, Hwu BL (1991) Stability and tension considerations regarding cover soils on geomembrane lined slopes. Geotext Geomembr 10(4):335–355CrossRef Koerner RM, Hwu BL (1991) Stability and tension considerations regarding cover soils on geomembrane lined slopes. Geotext Geomembr 10(4):335–355CrossRef
16.
go back to reference Seed RB, Boulanger RW (1991) Smooth HDPE-clay liner interface shear strengths: compaction effects. J Geotech Eng 117(4):686–693CrossRef Seed RB, Boulanger RW (1991) Smooth HDPE-clay liner interface shear strengths: compaction effects. J Geotech Eng 117(4):686–693CrossRef
17.
go back to reference Hullings DE, Sansone LJ (1997) Design concerns and performance of geomembrane anchor trenches. Geotext Geomembr 15(4–6):403–417CrossRef Hullings DE, Sansone LJ (1997) Design concerns and performance of geomembrane anchor trenches. Geotext Geomembr 15(4–6):403–417CrossRef
18.
go back to reference Villard P, Gourc JP, Feki N (1999) Analysis of geosynthetic lining systems (GLS) undergoing large deformations. Geotext Geomembr 17(1):17–32CrossRef Villard P, Gourc JP, Feki N (1999) Analysis of geosynthetic lining systems (GLS) undergoing large deformations. Geotext Geomembr 17(1):17–32CrossRef
19.
go back to reference Izgin M, Wasti Y (1998) Geomembrane–sand interface frictional properties as determined by inclined board and shear box tests. Geotext Geomembr 16(4):207–219CrossRef Izgin M, Wasti Y (1998) Geomembrane–sand interface frictional properties as determined by inclined board and shear box tests. Geotext Geomembr 16(4):207–219CrossRef
20.
go back to reference Chareyre B, Briançon L, Villard P (2002) Theoretical versus experimental modeling of the anchorage capacity of geotextiles in trenches. Geosynth Int 9(2):97–123CrossRef Chareyre B, Briançon L, Villard P (2002) Theoretical versus experimental modeling of the anchorage capacity of geotextiles in trenches. Geosynth Int 9(2):97–123CrossRef
21.
go back to reference De A, Vellone DA (2005) Experimental and numerical modeling of geosynthetic anchor trench. In: Geosynthetics research and development in progress, pp 1–7 De A, Vellone DA (2005) Experimental and numerical modeling of geosynthetic anchor trench. In: Geosynthetics research and development in progress, pp 1–7
22.
go back to reference Fleming IR, Sharma JS, Jogi MB (2006) Shear strength of geomembrane–soil interface under unsaturated conditions. Geotext Geomembr 24(5):274–284CrossRef Fleming IR, Sharma JS, Jogi MB (2006) Shear strength of geomembrane–soil interface under unsaturated conditions. Geotext Geomembr 24(5):274–284CrossRef
23.
go back to reference Ezzein FM, Bathurst RJ (2014) A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil. Geotext Geomembr 42(3):246–255CrossRef Ezzein FM, Bathurst RJ (2014) A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil. Geotext Geomembr 42(3):246–255CrossRef
24.
go back to reference Pirnia P, Duhaime F, Manashti J (2018) Machine learning algorithms for applications in geotechnical engineering. In: Proc. GeoEdmonton, pp 1–37 Pirnia P, Duhaime F, Manashti J (2018) Machine learning algorithms for applications in geotechnical engineering. In: Proc. GeoEdmonton, pp 1–37
25.
go back to reference Gao JL, Zhang MX, Zhang WJ (2010) Interface frictional property between sand and geomembrane. In: Advances in environmental geotechnics. Springer, Berlin, Heidelberg, pp 822–827 Gao JL, Zhang MX, Zhang WJ (2010) Interface frictional property between sand and geomembrane. In: Advances in environmental geotechnics. Springer, Berlin, Heidelberg, pp 822–827
Metadata
Title
Prediction of Interface Friction Angle Between Landfill Liner and Soil Using Machine Learning
Authors
Faizanjunaid Mohammed
Sasanka Mouli Sravanam
K. V. N. S. Raviteja
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-5077-3_32