Skip to main content
Top

2019 | OriginalPaper | Chapter

13. Prediction of Local Microstructure and Mechanical Properties of Welded Joint Metal with Allowance for Its Thermal Cycle

Author : Victor A. Karkhin

Published in: Thermal Processes in Welding

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The behaviour of a welded joint under external conditions (load, temperature, hostile environment, etc.) depends on the local microstructure and local mechanical properties of all welded joint zones (of the weld, HAZ and base metal). In order to predict the microstructure and properties, it is necessary to know the thermal processes in the welded joint, i.e. to solve the heat conduction problem with allowance for body geometry, boundary conditions, welding conditions, and the thermophysical properties of the metal (Fig. 13.1).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adams, C. (1958). Cooling rates and peak temperatures in fusion welding. Welding Journal, 37(5), 210-s–215-s. Adams, C. (1958). Cooling rates and peak temperatures in fusion welding. Welding Journal, 37(5), 210-s–215-s.
go back to reference Berkhout, C. F., & van Lent, P. H. (1968). Anwendung von Spitzentemperatur-Abkuhlzeit (STAZ)-Schaubildern beim Schweissen hochfester Stahle. Schweissen und Schneiden, 6, 256–260 (in German). Berkhout, C. F., & van Lent, P. H. (1968). Anwendung von Spitzentemperatur-Abkuhlzeit (STAZ)-Schaubildern beim Schweissen hochfester Stahle. Schweissen und Schneiden, 6, 256–260 (in German).
go back to reference Buchmayr, B. (1991). Computer in der Werkstoff – und Schweisstechnik. Anwendung von mathematischen Modellen (436 pp.). Duesseldorf: DVS – Verlag (in German). Buchmayr, B. (1991). Computer in der Werkstoff – und Schweisstechnik. Anwendung von mathematischen Modellen (436 pp.). Duesseldorf: DVS – Verlag (in German).
go back to reference Buchmayr, B., & Cerjak, H. (1988). Mathematical description of HAZ behaviour of low-alloyed structural steels. In Proceedings of the International Conference on Improved Weldment Control with Special Reference to Computer Technology (pp. 43–51). Vienna. Buchmayr, B., & Cerjak, H. (1988). Mathematical description of HAZ behaviour of low-alloyed structural steels. In Proceedings of the International Conference on Improved Weldment Control with Special Reference to Computer Technology (pp. 43–51). Vienna.
go back to reference Degenkoble, J., Uwer, D., & Wegmann, H. (1984). Characterisation of weld thermal cycles with regard to their effect on the mechanical properties of weld joints by the cooling time t8/5 and its determination (17 pp.). IIW Doc. IX-1336-84. Degenkoble, J., Uwer, D., & Wegmann, H. (1984). Characterisation of weld thermal cycles with regard to their effect on the mechanical properties of weld joints by the cooling time t8/5 and its determination (17 pp.). IIW Doc. IX-1336-84.
go back to reference Devillers, L., Kaplan, D., & Testard, P. (1995). Predicting the microstructures and toughness of weld HAZs. Welding International, 9(2), 128–138. Devillers, L., Kaplan, D., & Testard, P. (1995). Predicting the microstructures and toughness of weld HAZs. Welding International, 9(2), 128–138.
go back to reference Frolov, V. V. (Ed.). (1988). Theory of welding processes (559 pp.). Moscow: Vysshaya Shkola (in Russian). Frolov, V. V. (Ed.). (1988). Theory of welding processes (559 pp.). Moscow: Vysshaya Shkola (in Russian).
go back to reference Gliha, V. (2005). The microstructure and properties of materials at the fusion line. Metalurgija, 44(1), 13–18. Gliha, V. (2005). The microstructure and properties of materials at the fusion line. Metalurgija, 44(1), 13–18.
go back to reference Grong, O. (1994). Metallurgical modelling of welding (581 pp.). London: The Institute of Materials. Grong, O. (1994). Metallurgical modelling of welding (581 pp.). London: The Institute of Materials.
go back to reference Karkhin, V. A., Homich, P. N., Ivanov, S. Yu., & Karimi J. (2013a). Prediction of microstructure and mechanical properties of weld metal in hybrid laser-arc welding. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application, 18–21 September 2013, (pp. 38–45). St. Petersburg, Russia: St. Petersburg Polytechnic University Publishing. Karkhin, V. A., Homich, P. N., Ivanov, S. Yu., & Karimi J. (2013a). Prediction of microstructure and mechanical properties of weld metal in hybrid laser-arc welding. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application, 18–21 September 2013, (pp. 38–45). St. Petersburg, Russia: St. Petersburg Polytechnic University Publishing.
go back to reference Karkhin, V. A., Khomich, P. N., Ivanov, S. Yu., Michailov, V. G., & Kah, P. (2013b). Prediction of the microstructure and mechanical properties of metal in welded joints with consideration for real weld geometry. International Institute of Welding. IIW RD305. Rev 3-3/7 (7 pp.). Karkhin, V. A., Khomich, P. N., Ivanov, S. Yu., Michailov, V. G., & Kah, P. (2013b). Prediction of the microstructure and mechanical properties of metal in welded joints with consideration for real weld geometry. International Institute of Welding. IIW RD305. Rev 3-3/7 (7 pp.).
go back to reference Karkhin, V. A., Khomich, P. N., Ivanov, S. Yu., & Martikainen, J. (2015a). Prediction of microstructure and mechanical properties of heat affected zone in hybrid laser-arc welding. Welding and Diagnostics, 3, 9–12 (in Russian). Karkhin, V. A., Khomich, P. N., Ivanov, S. Yu., & Martikainen, J. (2015a). Prediction of microstructure and mechanical properties of heat affected zone in hybrid laser-arc welding. Welding and Diagnostics, 3, 9–12 (in Russian).
go back to reference Karkhin, V. A., Homich, P. N., Ivanov, S. Yu., Michailov, V. G., & Panchenko, O. V. (2015b). Prediction of microstructure and mechanical properties of weld metal in hybrid laser-arc welding. Advanced Materials Research, 1120–1121, 1292–1296. Karkhin, V. A., Homich, P. N., Ivanov, S. Yu., Michailov, V. G., & Panchenko, O. V. (2015b). Prediction of microstructure and mechanical properties of weld metal in hybrid laser-arc welding. Advanced Materials Research, 1120–1121, 1292–1296.
go back to reference Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)” (pp. 162–166). Kiev. Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)” (pp. 162–166). Kiev.
go back to reference Karkhin, V. A., Mnushkin, O. S., & Petrov, G. L. (1978). An approximate calculation of hydrogen redistribution in welded joints. In Proceedings of Leningrad Polytechnic Institute, No. 364 “Welding Production” (pp. 3–8) (in Russian). Karkhin, V. A., Mnushkin, O. S., & Petrov, G. L. (1978). An approximate calculation of hydrogen redistribution in welded joints. In Proceedings of Leningrad Polytechnic Institute, No. 364 “Welding Production” (pp. 3–8) (in Russian).
go back to reference Karkhin, V. A., & Okhapkin, K. A. (2011). Evaluation of the equivalent time of non-isothermal diffusion processes in the heat-affected zone in fusion welding. Welding International, 25(8), 629–632. Karkhin, V. A., & Okhapkin, K. A. (2011). Evaluation of the equivalent time of non-isothermal diffusion processes in the heat-affected zone in fusion welding. Welding International, 25(8), 629–632.
go back to reference Kasatkin, O. G. (1984a). Dependence of ultimate strength and true rupture strength of weld metal on alloying and welding thermal cycle. Automatic Welding, 9, 1–5 (in Russian). Kasatkin, O. G. (1984a). Dependence of ultimate strength and true rupture strength of weld metal on alloying and welding thermal cycle. Automatic Welding, 9, 1–5 (in Russian).
go back to reference Kasatkin, O. G. (1984b). Dependence of yield strength of weld metal on concentration of alloying elements. Automatic Welding, 8, 11–12 (in Russian). Kasatkin, O. G. (1984b). Dependence of yield strength of weld metal on concentration of alloying elements. Automatic Welding, 8, 11–12 (in Russian).
go back to reference Kasatkin, O. G. (1984c). Interpolation models for evaluation of phase composition in arc welding of low-alloyed steels. Automatic Welding, 1, 7–11 (in Russian). Kasatkin, O. G. (1984c). Interpolation models for evaluation of phase composition in arc welding of low-alloyed steels. Automatic Welding, 1, 7–11 (in Russian).
go back to reference Kasatkin, O. G. (1985). Calculation of weld metal resistance to fatigue crack propagation. Automatic Welding, 12, 1–4 (in Russian). Kasatkin, O. G. (1985). Calculation of weld metal resistance to fatigue crack propagation. Automatic Welding, 12, 1–4 (in Russian).
go back to reference Kasatkin, O. G. (1990). Mathematical modelling of composition-property relationships for welded joints and development of calculation-experimental system for optimisation of main technological factors of welding of low-alloyed structural steels. Doctoral thesis, Kiev: The Paton Welding Institute (in Russian). Kasatkin, O. G. (1990). Mathematical modelling of composition-property relationships for welded joints and development of calculation-experimental system for optimisation of main technological factors of welding of low-alloyed structural steels. Doctoral thesis, Kiev: The Paton Welding Institute (in Russian).
go back to reference Kasatkin, O. G. (2005). Estimation of impact energy of low-alloyed weld metal. Automatic Welding, 1, 57–58 (in Russian). Kasatkin, O. G. (2005). Estimation of impact energy of low-alloyed weld metal. Automatic Welding, 1, 57–58 (in Russian).
go back to reference Kasatkin, O. G., & Mikhoduy, L. I. (1992). Selection of alloying system for welding of low-alloyed high strength steels. Automatic Welding, 5, 19–25 (in Russian). Kasatkin, O. G., & Mikhoduy, L. I. (1992). Selection of alloying system for welding of low-alloyed high strength steels. Automatic Welding, 5, 19–25 (in Russian).
go back to reference Kasatkin, O. G., & Seyffarth, P. (1984). Influence of chemical and phase composition of the heat affected zone on its mechanical properties during arc welding of low-alloy steels. Automatic Welding, 2, 5–10 (in Russian). Kasatkin, O. G., & Seyffarth, P. (1984). Influence of chemical and phase composition of the heat affected zone on its mechanical properties during arc welding of low-alloy steels. Automatic Welding, 2, 5–10 (in Russian).
go back to reference Kasatkin, O. G., & Seyffarth, P. (1994). Dependence of impact energy of low-alloy and alloy weld metal on its composition and microstructure. Automatic Welding, 3, 52–66 (in Russian). Kasatkin, O. G., & Seyffarth, P. (1994). Dependence of impact energy of low-alloy and alloy weld metal on its composition and microstructure. Automatic Welding, 3, 52–66 (in Russian).
go back to reference Kim, D., & Rhee, S. (2003). Optimisation of GMA welding process using the dual response approach. International Journal of Production Research, 41(18), 4505–4515. Kim, D., & Rhee, S. (2003). Optimisation of GMA welding process using the dual response approach. International Journal of Production Research, 41(18), 4505–4515.
go back to reference Kim, D., Rhee S., & Park H. (2002). Modelling and optimisation of a GMA welding process by genetic algorithm and response surface methodology. International Journal of Production Research, 40(7), 1699–1711. Kim, D., Rhee S., & Park H. (2002). Modelling and optimisation of a GMA welding process by genetic algorithm and response surface methodology. International Journal of Production Research, 40(7), 1699–1711.
go back to reference Kluken, A. O., Ibarra, S., Liu, S., & Olson, D. L. (1992). Use of predictive equations for arctic steel heat affected zone properties. In Proceedings of 11th International Conference on Offshore Mechanics and Arctic Engineering (Vol. A, pp. 1–7). Calgary, Canada, June 1992. Publ. ASME. Kluken, A. O., Ibarra, S., Liu, S., & Olson, D. L. (1992). Use of predictive equations for arctic steel heat affected zone properties. In Proceedings of 11th International Conference on Offshore Mechanics and Arctic Engineering (Vol. A, pp. 1–7). Calgary, Canada, June 1992. Publ. ASME.
go back to reference Kumar, A., Zhang, W., Kim, C.-H., & DebRoy, T. (2005). A smart bi-directional model of heat transfer and free surface flow in gas metal arc fillet welding for practicing engineers. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 3–37). Graz: Verlag der Technischen Universitaet Graz. Kumar, A., Zhang, W., Kim, C.-H., & DebRoy, T. (2005). A smart bi-directional model of heat transfer and free surface flow in gas metal arc fillet welding for practicing engineers. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 3–37). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Martikainen, J., Hiltunen, E., Brhane, F., Karkhin, V., & Ivanov, S. (2011). Prediction of liquation crack initiation in Al-Mg-Si alloys welded joints. In J. Lippold, T. Boellinghaus, & C. E. Cross (Eds.), Hot cracking phenomena in welds III (pp. 71–86). Springer. Martikainen, J., Hiltunen, E., Brhane, F., Karkhin, V., & Ivanov, S. (2011). Prediction of liquation crack initiation in Al-Mg-Si alloys welded joints. In J. Lippold, T. Boellinghaus, & C. E. Cross (Eds.), Hot cracking phenomena in welds III (pp. 71–86). Springer.
go back to reference Martikainen, J., Hiltunen, E., Karkhin, V., & Ivanov, S. (2013a). Numerical analysis of liquation cracking in aluminium alloy welded joints. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 401–411). Graz: Verlag der Technischen Universitaet Graz. Martikainen, J., Hiltunen, E., Karkhin, V., & Ivanov, S. (2013a). Numerical analysis of liquation cracking in aluminium alloy welded joints. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 401–411). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Martikainen, J., Hiltunen, E., Karkhin, V. A., & Ivanov, S. Yu. (2013b). A method for evaluating the liquation cracking susceptibility of welded joints in Al-Mg-Si alloys. Welding International, 2, 139–143. Martikainen, J., Hiltunen, E., Karkhin, V. A., & Ivanov, S. Yu. (2013b). A method for evaluating the liquation cracking susceptibility of welded joints in Al-Mg-Si alloys. Welding International, 2, 139–143.
go back to reference Michailov, V., Karkhin, V., & Petrov, P. (2016). Principles of welding. St. Petersburg: Polytechnic University Publishing. Michailov, V., Karkhin, V., & Petrov, P. (2016). Principles of welding. St. Petersburg: Polytechnic University Publishing.
go back to reference Muzhichenko, A. F. (2000). Software for prediction of microstructure and mechanical properties of HAZ metal in welding of structural steels. Automatic Welding, 6, 40–43 (in Russian). Muzhichenko, A. F. (2000). Software for prediction of microstructure and mechanical properties of HAZ metal in welding of structural steels. Automatic Welding, 6, 40–43 (in Russian).
go back to reference Muzhichenko, A. F., Demchenko, V. F., & Romanenko A. V. (1991). Software for personal computers to calculate thermal processes in welding and surfacing. Automatic Welding, 6, 73–74 (in Russian). Muzhichenko, A. F., Demchenko, V. F., & Romanenko A. V. (1991). Software for personal computers to calculate thermal processes in welding and surfacing. Automatic Welding, 6, 73–74 (in Russian).
go back to reference Odanovic, Z., & Nedeljkovic, L. (2001). Numerical modelling of microstructure in heat affected zone of GMA welded HY-100 steel. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 5, pp. 381–392). London: IOM Communications. Odanovic, Z., & Nedeljkovic, L. (2001). Numerical modelling of microstructure in heat affected zone of GMA welded HY-100 steel. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 5, pp. 381–392). London: IOM Communications.
go back to reference Ossenbrink, R., & Michailov, V. (2007). Thermomechanical numerical simulation with the maximum temperature austenisation cooling time model (STAAZ). In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 357–372). Graz: Verlag der Technischen Universitaet Graz. Ossenbrink, R., & Michailov, V. (2007). Thermomechanical numerical simulation with the maximum temperature austenisation cooling time model (STAAZ). In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 357–372). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Parshin, S. G. (2011). Use of ultradispersed particles in activating flux to increase productivity of MIG/MAG welding of steels. Welding Production, 6, 28–32 (in Russian). Parshin, S. G. (2011). Use of ultradispersed particles in activating flux to increase productivity of MIG/MAG welding of steels. Welding Production, 6, 28–32 (in Russian).
go back to reference Parshin, S. G. (2013). Nanostructured and activating materials for arc welding (624 pp.). St. Petersburg: St. Petersburg Polytechnic University Publishing (in Russian). Parshin, S. G. (2013). Nanostructured and activating materials for arc welding (624 pp.). St. Petersburg: St. Petersburg Polytechnic University Publishing (in Russian).
go back to reference Petrov, G. L. (1963). Inhomogeneity of weld metal (206 pp.). Leningrad: Sudpromgiz (in Russian). Petrov, G. L. (1963). Inhomogeneity of weld metal (206 pp.). Leningrad: Sudpromgiz (in Russian).
go back to reference Petrov, G. L., & Tumarev, A. S. (1977). Theory of welding processes (2nd ed., 392 pp.). Moscow: Vysshaya Shkola Publishing (in Russian). Petrov, G. L., & Tumarev, A. S. (1977). Theory of welding processes (2nd ed., 392 pp.). Moscow: Vysshaya Shkola Publishing (in Russian).
go back to reference Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer. Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.
go back to reference Seyffarth, P. (1978). Schweiss – ZTU – Schaubilder. Atlas (151 pp.). Rostock: Wilhelm – Pieck – Universitaet, Band 1.; Band 2 (167 pp.) (in German). Seyffarth, P. (1978). Schweiss – ZTU – Schaubilder. Atlas (151 pp.). Rostock: Wilhelm – Pieck – Universitaet, Band 1.; Band 2 (167 pp.) (in German).
go back to reference Seyffarth, P., & Kassatkin, O. G. (1979). Mathematisch – statistische Beschreibung der Austenitumwandlung in der Waermeeinfusszone. Schweisstechnik. Berlin, 3, 117–119 (in German). Seyffarth, P., & Kassatkin, O. G. (1979). Mathematisch – statistische Beschreibung der Austenitumwandlung in der Waermeeinfusszone. Schweisstechnik. Berlin, 3, 117–119 (in German).
go back to reference Seyffarth, P., & Kasatkin, O. G. (2002). Calculation models for evaluating mechanical properties of HAZ metal in welding low-alloyed steels. In V. I. Makhnenko (Ed.), Proceedings of International Conference on Mathematical Modelling and Information Technologies in Welding and Related Processes (pp. 103–106). Kiev: Paton Welding Institute Publishing (in Russian). Seyffarth, P., & Kasatkin, O. G. (2002). Calculation models for evaluating mechanical properties of HAZ metal in welding low-alloyed steels. In V. I. Makhnenko (Ed.), Proceedings of International Conference on Mathematical Modelling and Information Technologies in Welding and Related Processes (pp. 103–106). Kiev: Paton Welding Institute Publishing (in Russian).
go back to reference Seyffarth, P., & Kuscher, G. (1982). Schweiss – ZTU – Schaubilder (233 pp.). Berlin: VEB Verlag Technik (in German). Seyffarth, P., & Kuscher, G. (1982). Schweiss – ZTU – Schaubilder (233 pp.). Berlin: VEB Verlag Technik (in German).
go back to reference Seyffarth, P., Meyer, B., & Scharff, A. (1992). Grosser Atlas Schweiss – ZTU – Schaubilder (176 pp.). Duesseldorf: DVS – Verlag (in German). Seyffarth, P., Meyer, B., & Scharff, A. (1992). Grosser Atlas Schweiss – ZTU – Schaubilder (176 pp.). Duesseldorf: DVS – Verlag (in German).
go back to reference Shewmon, P. G. (1963). Diffusion in solids (200 pp.). New York: McGraw-Hill Book Co. Shewmon, P. G. (1963). Diffusion in solids (200 pp.). New York: McGraw-Hill Book Co.
go back to reference Shorshorov, M. H., & Belov, V. V. (1972). Phase transformations and changes of steel properties in welding (220 pp.). Moscow: Nauka (in Russian). Shorshorov, M. H., & Belov, V. V. (1972). Phase transformations and changes of steel properties in welding (220 pp.). Moscow: Nauka (in Russian).
go back to reference Vasudevan, M., Bhaduri, A. K., & Raj, B. (2007). Genetic algorithm for optimizing the A-TIG welding of austenitic stainless steels. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 23–35). Graz: Verlag der Technischen Universitaet Graz. Vasudevan, M., Bhaduri, A. K., & Raj, B. (2007). Genetic algorithm for optimizing the A-TIG welding of austenitic stainless steels. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 23–35). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Yazovskikh, V. M., & Belenky, V. Ya. (2011a). Thermal processes in surfacing of solid cylinders. Welding and Diagnostics, 3, 27–31 (in Russian). Yazovskikh, V. M., & Belenky, V. Ya. (2011a). Thermal processes in surfacing of solid cylinders. Welding and Diagnostics, 3, 27–31 (in Russian).
go back to reference Yazovskikh, V. M., & Belenky, V. Ya. (2011b). Thermal processes in surfacing of cylindrical solids with strip electrode. Welding Production, 12, 20–24 (in Russian). Yazovskikh, V. M., & Belenky, V. Ya. (2011b). Thermal processes in surfacing of cylindrical solids with strip electrode. Welding Production, 12, 20–24 (in Russian).
go back to reference Yurioka, N., Ohshita, S., & Tamehiro, H. (1981). Study on carbon equivalents to assess cold cracking tendency and hardness. In Proceedings of International Symposium on Pipeline Welding in the ‘80s, 18 March 1981, (pp. 1–15). Publication of Australian Welding Research Association. Yurioka, N., Ohshita, S., & Tamehiro, H. (1981). Study on carbon equivalents to assess cold cracking tendency and hardness. In Proceedings of International Symposium on Pipeline Welding in the ‘80s, 18 March 1981, (pp. 1–15). Publication of Australian Welding Research Association.
Metadata
Title
Prediction of Local Microstructure and Mechanical Properties of Welded Joint Metal with Allowance for Its Thermal Cycle
Author
Victor A. Karkhin
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-5965-1_13

Premium Partners