Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-03-2021

Prediction of product roughness, profile, and roundness using machine learning techniques for a hard turning process

Journal:
Advances in Manufacturing
Authors:
Chunling Du, Choon Lim Ho, Jacek Kaminski

Abstract

High product quality is one of key demands of customers in the field of manufacturing such as computer numerical control (CNC) machining. Quality monitoring and prediction is of great importance to assure high-quality or zero defect production. In this work, we consider roughness parameter Ra, profile deviation Pt and roundness deviation RONt of the machined products by a lathe. Intrinsically, these three parameters are much related to the machine spindle parameters of preload, temperature, and rotations per minute (RPMs), while in this paper, spindle vibration and cutting force are taken as inputs and used to predict the three quality parameters. Power spectral density (PSD) based feature extraction, the method to generate compact and well-correlated features, is proposed in details in this paper. Using the efficient features, neural network based machine learning technique turns out to be able to result in high prediction accuracy with R2 score of 0.92 for roughness, 0.86 for profile, and 0.95 for roundness.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Premium Partners

    Image Credits