Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Prediction of Stock Prices Based on Markov Chain

share
SHARE

Abstract

Markov Chain is a random process with Markov property in probability theory and mathematical statistics, which exists in discrete exponential set and state space. The essence of the Markov chain prediction model is “no after effect”. No after effect generally refers to the state of things in the future is only related to the state of this stage and has nothing to do with the state in any previous stage [3]. The Markov chain suitable for continuous exponential set is called Markov process. But it is sometimes regarded as a subset of Markov chain, namely Continuous-Time MC, CTMC, and Discrete-Time MC, DTMC correspondingly. So, Markov chain is a relatively broad concept. Based on the Markov chain, this paper makes a prediction on the closing price of Shanghai Stock Exchange Index. The stock market is risky. There are many ways to predict the stock market, which can be summarized into two categories: stock price fluctuation prediction models based on statistical theory [1] and artificial intelligence prediction models [2]. The paper introduces a brief introduction of Markov chain and uses the case of the closing price of the above stock index to measure the accuracy of Markov chain price prediction.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Yan, C.-N.: Application of density evolution method for obtaining up days of stock market. J. Shanghai Univ. 9(2), 184–187 (2003) Yan, C.-N.: Application of density evolution method for obtaining up days of stock market. J. Shanghai Univ. 9(2), 184–187 (2003)
2.
go back to reference Filippo, C.: Forecasting price increments using an artificial neural network. Adv. Comp. Syst. 4(1), 45–56 (2001) CrossRef Filippo, C.: Forecasting price increments using an artificial neural network. Adv. Comp. Syst. 4(1), 45–56 (2001) CrossRef
3.
go back to reference Tai, W.-Z.: Using Markov chain model to forecast stock market’s short-term trend. J. Southwest Univ. National. 34(3), 477–481 (2009) Tai, W.-Z.: Using Markov chain model to forecast stock market’s short-term trend. J. Southwest Univ. National. 34(3), 477–481 (2009)
Metadata
Title
Prediction of Stock Prices Based on Markov Chain
Author
Ke Wu
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5359-9_6

Premium Partner