Skip to main content
Top
Published in: Neural Computing and Applications 11/2019

29-05-2018 | Original Article

Prediction of the vertical force during FSW of AZ31 magnesium alloy sheets using an artificial neural network-based model

Authors: Alessio D’Orazio, Archimede Forcellese, Michela Simoncini

Published in: Neural Computing and Applications | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multivariable empirical model based on an artificial neural network (ANN) was developed in order to predict the vertical force occurring during friction stir welding (FSW) of sheets in AZ31 magnesium alloy. To this purpose, FSW experiments were performed at different values of rotational and welding speeds, and the vertical force versus time curve was recorded during the different stages of the process by means of a dedicated sandwich dynamometer. Such results were used in the training stage of the artificial neural network-based model developed to predict vertical force versus time curves. A multi-layer feed forward ANN, using the back-propagation algorithm, consisting of the input layer with four input parameters (rotational speed, welding speed, rotational speed to welding speed ratio and processing time), two hidden layers with four neurons each, and the output layer with the vertical force as output, was built and trained. The generalization capability of the ANN was tested using a two-step procedure: in the former, the leave-one-out cross-validation method was used whilst, in the latter, curves not included in the training dataset were taken into account. The low values of the relative error and average absolute relative error, and the high correlation coefficients between predicted and experimental results have proven the excellent capability of the artificial neural network in modeling complex shape of the curve and in capturing the effect of the process parameters on the vertical force without a priori knowledge of the complex microstructural and mechanical mechanisms taking place during friction stir welding. Finally, the relationship between vertical force and processing time, at different welding and rotational speeds, was also predicted using the support vector machine algorithm and the results were compared with those given by the ANN-based model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRef Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRef
2.
go back to reference Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding—process, weldment structure and properties. Prog Mater Sci 53:980–1023CrossRef Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding—process, weldment structure and properties. Prog Mater Sci 53:980–1023CrossRef
3.
go back to reference Cabibbo M, Forcellese A, Simoncini M (2016) New approaches to the friction stir welding of aluminum alloys. In: Ishak M (ed) Joining technologies. InTech, Osaka, pp 7–26 Cabibbo M, Forcellese A, Simoncini M (2016) New approaches to the friction stir welding of aluminum alloys. In: Ishak M (ed) Joining technologies. InTech, Osaka, pp 7–26
4.
go back to reference Stasik MC, Wagoner RH (1996) Forming of tailor welded aluminum blanks. Aluminum and magnesium for automotive applications. The Minerals, Metals & Materials Society, Pittsburgh, pp 69–83 Stasik MC, Wagoner RH (1996) Forming of tailor welded aluminum blanks. Aluminum and magnesium for automotive applications. The Minerals, Metals & Materials Society, Pittsburgh, pp 69–83
5.
go back to reference Contuzzi N, Campanelli SL, Casalino G, Ludovico AD (2016) On the role of the thermal contact conductance during the friction stir welding of an AA5754-H111 butt joint. Appl Therm Eng 104:263–273CrossRef Contuzzi N, Campanelli SL, Casalino G, Ludovico AD (2016) On the role of the thermal contact conductance during the friction stir welding of an AA5754-H111 butt joint. Appl Therm Eng 104:263–273CrossRef
6.
go back to reference Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A 419:381–388CrossRef Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A 419:381–388CrossRef
7.
go back to reference Reza-E-Rabby MD, Reynolds AP (2014) Effect of tool pin thread forms on friction stir weldability of different aluminum alloys. Procedia Eng 90:637–642CrossRef Reza-E-Rabby MD, Reynolds AP (2014) Effect of tool pin thread forms on friction stir weldability of different aluminum alloys. Procedia Eng 90:637–642CrossRef
9.
go back to reference Forcellese A, Martarelli M, Pandarese G, Simoncini M (2013) Similar and dissimilar FSWed joints in lightweight alloys: heating distribution assessment and IR thermography monitoring for on-line quality control. Key Eng Mater 554–557:1055–1064CrossRef Forcellese A, Martarelli M, Pandarese G, Simoncini M (2013) Similar and dissimilar FSWed joints in lightweight alloys: heating distribution assessment and IR thermography monitoring for on-line quality control. Key Eng Mater 554–557:1055–1064CrossRef
10.
go back to reference Lakshminarayanan AK, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA6061 aluminum alloy joints. Int J Adv Manuf Technol 40:286–296CrossRef Lakshminarayanan AK, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA6061 aluminum alloy joints. Int J Adv Manuf Technol 40:286–296CrossRef
11.
go back to reference Shrivastava A, Krones M, Pfefferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168CrossRef Shrivastava A, Krones M, Pfefferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168CrossRef
12.
go back to reference Casalino G, Campanelli S, Mortello M (2014) Influence of shoulder geometry and coating of the tool on the friction stir welding of aluminium alloy plates. Procedia Eng 69:1541–1548CrossRef Casalino G, Campanelli S, Mortello M (2014) Influence of shoulder geometry and coating of the tool on the friction stir welding of aluminium alloy plates. Procedia Eng 69:1541–1548CrossRef
13.
go back to reference Upadhyay P, Reynolds AP (2012) Effects of forge axis force and backing plate thermal diffusivity on FSW of AA6056. Mater Sci Eng A 558:394–402CrossRef Upadhyay P, Reynolds AP (2012) Effects of forge axis force and backing plate thermal diffusivity on FSW of AA6056. Mater Sci Eng A 558:394–402CrossRef
14.
go back to reference Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches—a reference guide. Adv Eng Softw 39:483–496CrossRef Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches—a reference guide. Adv Eng Softw 39:483–496CrossRef
15.
go back to reference Buffa G, Fratini L, Simoncini M, Forcellese A (2016) In-process tool force and rotation variation to control sheet thickness change in friction stir welding of magnesium alloys. In: AIP conference proceedings 1769: article number 100008. https://doi.org/10.1063/1.4963502 Buffa G, Fratini L, Simoncini M, Forcellese A (2016) In-process tool force and rotation variation to control sheet thickness change in friction stir welding of magnesium alloys. In: AIP conference proceedings 1769: article number 100008. https://​doi.​org/​10.​1063/​1.​4963502
16.
go back to reference Buffa G, Campanella D, Forcellese A, Fratini L, La Commare U, Simoncini M (2018) In-process control strategies for friction stir welding of AZ31 sheets with non-uniform thickness. Int J Adv Manuf Technol 95(1–4):493–504CrossRef Buffa G, Campanella D, Forcellese A, Fratini L, La Commare U, Simoncini M (2018) In-process control strategies for friction stir welding of AZ31 sheets with non-uniform thickness. Int J Adv Manuf Technol 95(1–4):493–504CrossRef
17.
go back to reference He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66CrossRef He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66CrossRef
18.
go back to reference Forcellese A, Martarelli M, Simoncini M (2016) Effect of process parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys. Int J Adv Manuf Technol 85:595–604CrossRef Forcellese A, Martarelli M, Simoncini M (2016) Effect of process parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys. Int J Adv Manuf Technol 85:595–604CrossRef
19.
go back to reference Astarita A, Squillace A, Carrino L (2014) Experimental study of the forces acting on the tool in the friction-stir welding of AA 2024 T3 sheets. J Mater Eng Perform 23(10):3754–3761CrossRef Astarita A, Squillace A, Carrino L (2014) Experimental study of the forces acting on the tool in the friction-stir welding of AA 2024 T3 sheets. J Mater Eng Perform 23(10):3754–3761CrossRef
20.
go back to reference Trimble D, Monaghan J, O’Donnell GE (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann Manuf Technol 61:9–12CrossRef Trimble D, Monaghan J, O’Donnell GE (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann Manuf Technol 61:9–12CrossRef
21.
go back to reference Buffa G, Fratini L, Hua J, Shivpuri R (2006) Friction stir welding of tailored blanks: investigation on process feasibility. CIRP Ann Manuf Technol 55(1):279–282CrossRef Buffa G, Fratini L, Hua J, Shivpuri R (2006) Friction stir welding of tailored blanks: investigation on process feasibility. CIRP Ann Manuf Technol 55(1):279–282CrossRef
22.
go back to reference Bariani PF, Dal Negro T, Bruschi S (2004) Testing and modelling of materials response to deformation. CIRP Ann Manuf Technol 53(2):1–22CrossRef Bariani PF, Dal Negro T, Bruschi S (2004) Testing and modelling of materials response to deformation. CIRP Ann Manuf Technol 53(2):1–22CrossRef
23.
go back to reference Zhu Y, Zeng W, Sun Y, Feng F, Zhou Y (2011) Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy. Comput Mater Sci 50:1785–1790CrossRef Zhu Y, Zeng W, Sun Y, Feng F, Zhou Y (2011) Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy. Comput Mater Sci 50:1785–1790CrossRef
24.
go back to reference Mandal S, Sivaprasad PV, Venugopal S, Murthy KPN (2009) Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Appl Soft Comput 9:237–244CrossRef Mandal S, Sivaprasad PV, Venugopal S, Murthy KPN (2009) Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Appl Soft Comput 9:237–244CrossRef
25.
go back to reference Bruni C, Forcellese A, Gabrielli F, Simoncini M (2006) Modelling of the rheological behaviour of aluminium alloys in multistep hot deformation using the multiple regression analysis and artificial neural network techniques. J Mater Process Technol 177:323–326CrossRef Bruni C, Forcellese A, Gabrielli F, Simoncini M (2006) Modelling of the rheological behaviour of aluminium alloys in multistep hot deformation using the multiple regression analysis and artificial neural network techniques. J Mater Process Technol 177:323–326CrossRef
26.
go back to reference Forcellese A, Gabrielli F, Simoncini M (2011) Prediction of flow curves and forming limit curves of Mg alloy thin sheets using ANN-based models. Comput Mater Sci 50:3184–3197CrossRef Forcellese A, Gabrielli F, Simoncini M (2011) Prediction of flow curves and forming limit curves of Mg alloy thin sheets using ANN-based models. Comput Mater Sci 50:3184–3197CrossRef
27.
go back to reference Ambrogio G, Gagliardi F (2013) Design of an optimized procedure to predict opposite performances in porthole die extrusion. Neural Comput Appl 23:195–206CrossRef Ambrogio G, Gagliardi F (2013) Design of an optimized procedure to predict opposite performances in porthole die extrusion. Neural Comput Appl 23:195–206CrossRef
28.
go back to reference Vundavilli PR, Phani Kumar J, Sai Priyatham Ch, Parappagoudar MB (2015) Neural network-based expert system for modeling of tube spinning process. Neural Comput Appl 26:1481–1493CrossRef Vundavilli PR, Phani Kumar J, Sai Priyatham Ch, Parappagoudar MB (2015) Neural network-based expert system for modeling of tube spinning process. Neural Comput Appl 26:1481–1493CrossRef
29.
go back to reference Esmailzadeh M, Aghaie-Khafri M (2012) Finite element and artificial neural network analysis of ECAP. Comput Mater Sci 63:127–133CrossRef Esmailzadeh M, Aghaie-Khafri M (2012) Finite element and artificial neural network analysis of ECAP. Comput Mater Sci 63:127–133CrossRef
30.
go back to reference Roberts SM, Kusiak J, Liu YL, Forcellese A, Withers PJ (1998) Prediction of damage evolution in forged aluminium metal matrix composites using a neural network approach. J Mater Process Technol 80–81:507–512CrossRef Roberts SM, Kusiak J, Liu YL, Forcellese A, Withers PJ (1998) Prediction of damage evolution in forged aluminium metal matrix composites using a neural network approach. J Mater Process Technol 80–81:507–512CrossRef
31.
go back to reference Kanti KM, Rao PS (2008) Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J Mater Process Technol 200:300–305CrossRef Kanti KM, Rao PS (2008) Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J Mater Process Technol 200:300–305CrossRef
32.
go back to reference Nagesh DS, Datta GL (2002) Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J Mater Process Technol 123:303–312CrossRef Nagesh DS, Datta GL (2002) Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J Mater Process Technol 123:303–312CrossRef
33.
go back to reference Jeng JY, Mau TF, Leu SM (2000) Prediction of laser butt joint welding parameters using back propagation and learning vector quantization networks. J Mater Process Technol 99:207–218CrossRef Jeng JY, Mau TF, Leu SM (2000) Prediction of laser butt joint welding parameters using back propagation and learning vector quantization networks. J Mater Process Technol 99:207–218CrossRef
34.
go back to reference Ates H (2007) Prediction of gas metal arc welding parameters based on artificial neural networks. Mater Des 28–7:2015–2023CrossRef Ates H (2007) Prediction of gas metal arc welding parameters based on artificial neural networks. Mater Des 28–7:2015–2023CrossRef
35.
go back to reference Choobi MS, Haghpanahi M, Sedighi M (2012) Prediction of welding-induced angular distortions in thin butt-welded plates using artificial neural networks. Comput Mater Sci 62:152–159CrossRef Choobi MS, Haghpanahi M, Sedighi M (2012) Prediction of welding-induced angular distortions in thin butt-welded plates using artificial neural networks. Comput Mater Sci 62:152–159CrossRef
37.
go back to reference Drouillet C, Karandikar J, Nath C, Journeaux AC, El Mansori M, Kurfess T (2016) Tool life predictions in milling using spindle power with the neural network technique. J Manuf Processes 22:161–168CrossRef Drouillet C, Karandikar J, Nath C, Journeaux AC, El Mansori M, Kurfess T (2016) Tool life predictions in milling using spindle power with the neural network technique. J Manuf Processes 22:161–168CrossRef
38.
go back to reference Elkatatny S, Tariq Z, Mahmoud M (2016) Real time prediction of drilling fluid rheological properties using artificial neural Networks visible mathematical model (white box). J Petrol Sci Eng 146:1202–1210CrossRef Elkatatny S, Tariq Z, Mahmoud M (2016) Real time prediction of drilling fluid rheological properties using artificial neural Networks visible mathematical model (white box). J Petrol Sci Eng 146:1202–1210CrossRef
39.
go back to reference Deepan Bharathi Kannan T, Kkannan GR, Kumar BS, Baskar N (2014) Application of artificial neural network modeling for machining parameters optimization in drilling operation. Procedia Mater Sci 5:2242–2249CrossRef Deepan Bharathi Kannan T, Kkannan GR, Kumar BS, Baskar N (2014) Application of artificial neural network modeling for machining parameters optimization in drilling operation. Procedia Mater Sci 5:2242–2249CrossRef
40.
go back to reference Venkatesan D, Kannan K, Saravanan R (2009) A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput Appl 18:135–140CrossRef Venkatesan D, Kannan K, Saravanan R (2009) A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput Appl 18:135–140CrossRef
41.
go back to reference Buffa G, Fratini L, Micari F (2012) Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys. J Manuf Processes 14:289–296CrossRef Buffa G, Fratini L, Micari F (2012) Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys. J Manuf Processes 14:289–296CrossRef
42.
go back to reference Shojaeefard MH, Behnagh RA, Akbari M, Givid MKB, Farhanie F (2013) Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater Des 44:190–198CrossRef Shojaeefard MH, Behnagh RA, Akbari M, Givid MKB, Farhanie F (2013) Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater Des 44:190–198CrossRef
43.
go back to reference Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28:78–84CrossRef Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28:78–84CrossRef
44.
go back to reference Manvatkar VD, Arora A, De A, DebRoy T (2012) Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding. Sci Technol Weld Join 17(6):460–466CrossRef Manvatkar VD, Arora A, De A, DebRoy T (2012) Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding. Sci Technol Weld Join 17(6):460–466CrossRef
45.
go back to reference Aliha MRM, Shahheidari M, Bisadi M, Akbari M, Hossain S (2016) Mechanical and metallurgical properties of dissimilar AA6061-T6 and AA7277-T6 joint made by FSW technique. Int J Adv Manuf Technol 86(9–12):2551–2565CrossRef Aliha MRM, Shahheidari M, Bisadi M, Akbari M, Hossain S (2016) Mechanical and metallurgical properties of dissimilar AA6061-T6 and AA7277-T6 joint made by FSW technique. Int J Adv Manuf Technol 86(9–12):2551–2565CrossRef
46.
go back to reference De Filippis LAC, Serio LM, Facchini F, Mummolo G, Ludovico AD (2016) Prediction of the vickers microhardness and ultimate tensile strength of AA5754 h111 friction stir welding butt joints using artificial neural network. Materials 9:Article number 915 De Filippis LAC, Serio LM, Facchini F, Mummolo G, Ludovico AD (2016) Prediction of the vickers microhardness and ultimate tensile strength of AA5754 h111 friction stir welding butt joints using artificial neural network. Materials 9:Article number 915
47.
go back to reference Dewan MW, Huggett DJ, Liao TW, Wahab MA, Okeil AM (2016) Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network. Mater Des 92:288–299CrossRef Dewan MW, Huggett DJ, Liao TW, Wahab MA, Okeil AM (2016) Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network. Mater Des 92:288–299CrossRef
48.
go back to reference Shojaeefard MH, Khalkhali A, Akbari M, Asadi P (2015) Investigation of friction stir welding tool parameters using FEM and neural network. Proc Inst Mech Eng L J Mater Des Appl 229(3):209–217 Shojaeefard MH, Khalkhali A, Akbari M, Asadi P (2015) Investigation of friction stir welding tool parameters using FEM and neural network. Proc Inst Mech Eng L J Mater Des Appl 229(3):209–217
49.
go back to reference Boldsaikhan E, Corwin EM, Logar AM, Arbegast WJ (2011) The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding. Appl Soft Comput 11:4839–4846CrossRef Boldsaikhan E, Corwin EM, Logar AM, Arbegast WJ (2011) The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding. Appl Soft Comput 11:4839–4846CrossRef
50.
go back to reference Bruni C, Forcellese A, Gabrielli F, Simoncini M (2010) Effect of the ω/v ratio and sheet thickness on mechanical properties of magnesium alloy FSWed joints. Int J Mater Form 3(1):1007–1010CrossRef Bruni C, Forcellese A, Gabrielli F, Simoncini M (2010) Effect of the ω/v ratio and sheet thickness on mechanical properties of magnesium alloy FSWed joints. Int J Mater Form 3(1):1007–1010CrossRef
51.
go back to reference Bruni C, Buffa G, Fratini L, Simoncini M (2010) Friction stir welding of magnesium alloys under different process parameters. Mater Sci Forum 638–642:3954–3959CrossRef Bruni C, Buffa G, Fratini L, Simoncini M (2010) Friction stir welding of magnesium alloys under different process parameters. Mater Sci Forum 638–642:3954–3959CrossRef
52.
go back to reference Nguyen MH, Abbass HA, McKay RI (2005) Stopping criteria for ensemble of evolutionary artificial neural networks. Appl Soft Comput 6:100–107CrossRef Nguyen MH, Abbass HA, McKay RI (2005) Stopping criteria for ensemble of evolutionary artificial neural networks. Appl Soft Comput 6:100–107CrossRef
53.
go back to reference Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and crossvalidation. Am Stat 37(1):36–48 Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and crossvalidation. Am Stat 37(1):36–48
54.
go back to reference Sun Y, Zeng W, Han Y, Ma X, Zhao Y, Guo P, Wang G, Dargusch MS (2012) Determination of the influence of processing parameters on the mechanical properties of the Ti–6Al–4V alloy using an artificial neural network. Comput Mater Sci 60:239–244CrossRef Sun Y, Zeng W, Han Y, Ma X, Zhao Y, Guo P, Wang G, Dargusch MS (2012) Determination of the influence of processing parameters on the mechanical properties of the Ti–6Al–4V alloy using an artificial neural network. Comput Mater Sci 60:239–244CrossRef
55.
go back to reference Ciccarelli D, El Mehtedi M, Forcellese A, Greco L, Simoncini M (2018) In-process control of rotational speed in friction stir welding of sheet blanks with variable mechanical properties. Procedia CIRP 67:440–445CrossRef Ciccarelli D, El Mehtedi M, Forcellese A, Greco L, Simoncini M (2018) In-process control of rotational speed in friction stir welding of sheet blanks with variable mechanical properties. Procedia CIRP 67:440–445CrossRef
56.
go back to reference Berk RA (2008) Support vector machines. In: Bickel P, Diggle P, Fienberg SE, Gather U, Zeger S (eds) Statistical learning from a regression perspective. Springer series in statistics. Springer, New York Berk RA (2008) Support vector machines. In: Bickel P, Diggle P, Fienberg SE, Gather U, Zeger S (eds) Statistical learning from a regression perspective. Springer series in statistics. Springer, New York
57.
go back to reference Zhang X (2016) Support vector machines. In: Sammut C, Webb G (eds) Encyclopedia of machine learning and data mining. Springer, Boston Zhang X (2016) Support vector machines. In: Sammut C, Webb G (eds) Encyclopedia of machine learning and data mining. Springer, Boston
58.
go back to reference Desu RK, Guntuku SC, Aditya B, Gupta AK (2014) Support vector regression based flow stress prediction in austenitic stainless steel 304. Procedia Mater Sci 6:368–375CrossRef Desu RK, Guntuku SC, Aditya B, Gupta AK (2014) Support vector regression based flow stress prediction in austenitic stainless steel 304. Procedia Mater Sci 6:368–375CrossRef
Metadata
Title
Prediction of the vertical force during FSW of AZ31 magnesium alloy sheets using an artificial neural network-based model
Authors
Alessio D’Orazio
Archimede Forcellese
Michela Simoncini
Publication date
29-05-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3562-6

Other articles of this Issue 11/2019

Neural Computing and Applications 11/2019 Go to the issue

Premium Partner